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ABSTRACT
" 'The work performed under this contract extended andiexpanded theprincipal

investigator's previous work on definingi a distributed architecture model that would
support digital signal processing applications. 04 efforts wem concentrated on two
aspects: the development of a reliable simulation facility that would more accurately
predict the performance of our distributed system (known as the d-ALPS frame-
work), and the exploration of models of analysis for task distribution and resource
allocation within that framework.

The first portion Gf-w-orkwor* resulted in a set of computer programs that
interacted within our existing behavioral model for support d-ALPS applications.
The simulator itself is a flexible system that allows a variable degree of report infor-
mation to be generated for specification execution sequences. It was written to be
relatively portable within a UNLX-based environment.

The second portion of this worl1resulted in a master's-level thesis that discussed
analysis methods for d-ALPS architectures in terms of four broad analytical tech-
niques: static analysis, state generation analysis, schedule simulation, and architec-
tural simulation. Each of these methodologies is developed in terms of a series of
relevant application models that highlight the strengths and weaknesses of the d-
ALPS approach.

Our original research intentions under this grant were curtailed due to the prin-
cipal investigator's departure from Brown University and a resulting limiting of fund-
ing from the granting agency. It is expected that future work on this project will
occur within the Naval Research Laboratory and at the Center for Mathematics and
Computer Science, in Amsterdam.

III



1. Report Overview

This final report will summarize our activity on the NRL-supported research
project entitled: A Development Testbed for ALPS-based Systems (Grant #N00014-
87-K2023). This research was a follow-on contract to our original NRL-sponsored
work in grants N00014-85-K2002 and N00014-86-K2015. The research under this
grant took place between 1 June 1987 and 31 December 1987.

2. Activity Summary

The work covered under this grant spanned a period of seven months. This
period represented a unilateral shortening of the contract period by the contract
sponsor. As a result, only a portion of the originally-planned research was erried
out under this contract. The work that was performed consisted of two projects: the
development of a reliable simulator for ALPS-based systems, and the analysis of
ALPS architectures with regard to task distribution and resource allocation. The
activity under this grant is summarized in the following two sections. A detailed
description of the work involved in presented in Appendix A.

2.1. Updated d-ALPS Simulation Model.

Of the two major thrusts of our work, the first was to prepare an updated simu-
lation facility to conform to the d-ALPS model developed under contract N00014-
86-2015. This work, which resulted in a software model of the communications and
processing architecture for d-ALPS was completed in December of 1987. The source
code and executable versions of this updated simulator have been transferred to
NRL, along with the relevant documentation.

The nature of this work precluded any public publications or presentations.

2.2. Task Distribution and Resource Allocation for d-ALPS Systems

Along with the dovelopment of a software simulation facility, a project was ini-
tiated to study the effect of task distribution and resource modelling within the d-
ALPS framework. This work resulted in the development of a Mfaster's thesis, a
copy of which is attached as Appendix A. Interested readers are encouraged to con-
sult this comprehensive document.

The work describes four methodologies that were developed to support the
investigation of allocation and scheduling problems for a class of distributed process-
ing systems that were based on the d-ALPS model. Two perspectives on scheduling
were presented: that of the configurer, who supplies an underlying application and
must find a suitable configuration architecture, and second, the systems architect,
who is interested in investigating scheduling and allocation issues over the entire class

of ALPS applications.

In order to support the work, four investigation approaches were developed:
static analysis, state generation, schedule simulation, and archilcctural simulation.
Each of these methodologies is developed in terms of a series of relevant application
models that highlight the strengths and weaknesses of the d-ALPS approach.
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The descriptions of the results of this work depend heavily on the description of
the d-ALPS framework. This information, including an overview of the d-ALPS
model, are presented in appendix.

3. Personnel

The following personnel were actively engaged in research associated with this

garant:
D. C. A. Bulterman, Principal Investigator:

Professor Bulterman has been the technical director of the research described in
this report.

D. L. Leibholz, Graduate Student and RA:

Mr. Leibholz served as the lead technical research staff member on this project
and worked directly on the analysis of task distribution and resource allocation
aspects of the d-ALPS models. He received his Master's degree in May of 1988.

R. McConnell, Research Engineer:

Mr. McConnel wrote the updated d-ALPS simulator and directed independent

studies projects concerning a prototype implementation of the d-ALPS network.
He joined the technical staff of the NRL is January 1988.

4. Index of Reports and Publications

[1] D. L. Leibholz, "Methods of Analysis of Task Distribution and Resource Alloca-
tion in a Class of Distributed Control Multiprocessor Architectures", Masters

Thesis, Brown University, May 1988.
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Abstract

This thesis describes four methodologies that have been developed to support the
investigation of allocation and scheduling problems for a class of distributed processing sys-
tems. The class of systems is based on the ALPS (Alternative Low-level Primitive Struc-
turcs) methodology that uses a distributed and dynamic task distribution mechanism to
assign elements of an application algorithm to an architecture consisting of special-purpose
processing primitives.

Two perspectives on scheduling and allocation are presented. They are the perspec-
tives of the configurer. who is supplied an application algorithm and an specific underlying
ALPS architecture and must find a suitable configuration architecture, and the architect, who
is interested in investigating scheduling and allocation issues over the entire class of ALPS
architectures and in independence of the application domain. The configurer utilizes
application-specific, explicit performance criteria, such as task latency and throughput, to
guide a configuration. The architect is interested in application-general implicit performance
criteria to guide the analysis of an existing ALPS architecture and the design of future
underlying architectures.

In support of these perspectives, four investigation approaches have been developed.
Static analysis employs graph expansion and analysis methods te gain insights into an appli-
cation task graph. State generation demonstrates that, provided with gross simplifications of
the application task graph and the architecture, optimal solutions can be machine-generated.
The computation complexity and lack of extensibility of this method validates the final two
methodologies. Schedule simulation provides large-grained comparison of task mapping
methodologies. Architectural simulation, as implemented, is high level simulation of an
ALPS protocol which is part of the distributed-ALPS (d-ALPS) architecture. It provides a
configurer with performance evaluation of a configuration allocation and allows an architect
to analyze the d-ALPS architecture. The d-ALPS architecture is used as a model of an
existing ALPS architectural implementation. This thesis demonstrates, via this model, that
the four general ALPS investigation methodologies can be applied to the analysis of proto-
col and representation pathologies of a specific ALPS architecture.
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CIIAPTER 1

Introduction

The challenge of building reliable and high speed special-purpose processing systems

quickly and at lowver costs has motivated a search for faster and more flexible architectures.

Certain application domains, such as those which apply digital signal processing (DSP) tech-

niques to sampled data, pose substantial real-time processing demands. These demands are

growing as DSP alorithms become more complicated and as developers wish to process data

at faster rates.

High speed processing capabilities are enhanced by the development of special purpose

processing resources which take advantage of VLSI or VHSIC technology to provide very

high speed operations. These resources can be found in the DSP realm: primitives perform

DSP tasks such as Fourier transforms, matrix operations, and application-specific operations.

such as adaptive beam forming. In the graphics processing realm, special purpose primitives

perform transformation, clipping, and perspective operations. The technology is extending

into other realms. Special purpose chips have been built to perform edit distance searches,

pattern matching and neural network emulation. The prototype development of these devices

indicates that there is likely to be a growing demand for high speed, dedicated processing

systems in application areas that were previously served by more traditional, slower architec-

tures.

Paralleling the desire for high speed processing is efficient system integration.

Resource-based systems are currently integrated into application processors in a few ways.

Special purpose configurations of high speed, special purpose primitives can be created by

hard wiring those primitives together and scheduling tasks statically. An example of this

-1-
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approach is presented in [Curt82]. The integration produces a high speed processing net-

work, but each application must be designed from scratch. Hybrid approaches are the most

common to date. In these approaches, a general purpose processor serve as the controller

for a bank of special purpose resources, providing control and I/O. The EMSP Data Flow

Computer [Brow84] follows this paradigm. Unfortunately, it is difficult to extend this

method to large collections of heterogeneous primitives which require different types of con-

trol and interfacing: a central control bottleneck will develop. The Alternative Low-level

Primitive Structures (ALPS) integration approach attempts to overcome this bottleneck by

using a pool resource model in which tasks are dynamically mapped to available processing

primitives. The resulting architecture affords reliable, robust, and changeable implementa-

tions. From an ease-of-integration perspective, this approach affords an application indepen-

dence to the architecture. To create an application architecture, the application task directed

graph must be provided to individual primitive controllers and a suitable configuration com-

position must be decided upon. The first of these steps is a straightforward encoding. The

second can be decided upon via simulation and analysis of the application.

The essential model for d-ALPS [Bult86] describes application-driven configurations of

processing nodes. An ALPS application configurer is presented with an application algo-

rithm in the form of a directed task graph, with specified data arrival rates (fig. 1-1(a)). The

algorithm can be considered a set of processing tasks that are in a precedence and data-

sharing relationship. The ALPS approach dynamically maps that set of tasks onto a process-

ing configuration architecture which consists of a collection of special (or multi-) purpose

processing resources (fig. 1-1(b)). Central to integrating each individual processing element

is a homogeneous interface control unit (ICU) which interfaces the primitive to a common

interconnection structure: a set of parallel data and message busses.
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Figures 1-1(a) and 1-1(b): A directed task graph and the
mapping of that task graph onto a collection of processors.



One realization of the ALPS architecture approach is the distributed-ALPS (d-ALPS)

ar~iitecture. The dynanic assignment of tasks is performed not by a central controller but

by distributed controllers, called interface control units (ICU's), which share in scheduling

responsibilities. Each element of a d-ALPS configuration architecture contains an ICU-

primitive pair. The ICU has a description of the task graph, as well as information about the

capability of its attached primitive to perform certain tasks in that graph. The primitive per-

forms one or many of the tasks in the task graph and the ICU provides inter- and intra-node

task management functions. Inter-node management functions include participating in a dis-

tributed and dynamic task assignment mechanism, managing queues of data blocks which are

either waiting for resources or waiting on other data blocks to be produced, and handling all

monitoring, setup, and status information exchange. The intra-node functions include

orchestrating concurrent support facilities for memory management and data and message

transfer, and providing I/O and control to the attached processing primitive. The reader is

referred to the d-ALPS High Level Logical Control Specification in Appendix A for a more

complete description of the implementation of these control functions.

1.1. Thesis Scope

Designing and building ALPS architectures requires research and skills on both mun-

dane and fundamental levels. On a mundane level, a particular ALPS specification, such as

the d-ALPS specification, must be translated into replicated, physical implementations.

Along with this, interfaces between ICU's and each supportable primitive must be con-

structed. On more fundamental levels, research must proceed on many architectural chal-

lenges including: determining how to distribute tasks, managing queues of data, minimizing

communications complexity and overhead, and providing robust protocols that deliver perfor-

mance regardless of the application. This thesis is primarily concerned with one of these

research issues: task distribution.



5 -

Task distribution and allocation is of central concern to the underlying approach for

ALPS. Task distribution refers to all methodologies that are necessary for mapping directed

task graphs onto a sets of processing and communication resources. The minimal objectives

of research into task distribution arc to provide low cost, application independent mapping

mechanisms which do not deadlock. These have been realized in the distributed-ALPS (d-

ALPS) ICU specification. The overarching objectives are to find mapping mechanisms

wkhich capitalize on general or specific task graph, architecture, and performance parameters

so that the underlying architecture can be tailored to specific applications by either utilizing

low cost. application-independent mechanisms or by utilizing application-specific mechan-

isms that are implementable in an ALPS support architecture.

Task distribution, or "scheduling," can be thought of as the analysis and manipulation

of para-meters which effect a particular execution order. These parameters can be classified

into four categories: task definition parameters, architectural parameters, task mapping

parameters and performance parameters.

1.1.1. Task Definition Parameters

An application task graph imposes a precedence relationship among the subtasks that

compose it; that relationship is a partial ordering of all subtasks, in that subtasks that are not

predecessors or successors of each other can conceivably be executed in an arbitrary order

(fig. 1-2). The task definition level, then, is rooted in the underlying application precedence

and provides the static ordering of some or all of the task graph. Any execution order

which can be derived from the partial order is valid.

1.1.2. Architecture Parameters

The underlying architecture imposes certain constraint and cost parameters for task

scheduling. As the configurer chooses the composition of a configuration, the chosen
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allocation places boxunds on resource availability. This impacts task graphs which have peak

demands for resources that are greater than the allocated supply. Other parameters are less

application-specific. For example, the architectural implementation may impose static or

dynamic runtime costs which must be accounted for in a task schedule. Architecture param-

eters, then, include the composition-of the configuration allocation and the runtime task dis-

tribution and processing costs.

1.1.3. Task Mapping Parameters

The task mapping level refers to the alternative mechanisms that can be employed to

choose an execution order that is based on an incomplete task schedule definition. A com-

pletely specified task definition means that at the task definition level, the execution order

and resource assignment of all subtasks has been specified. If the task is not defined to this

level-the typical case--the mapping parameters can utilize random or heuristic-guided

assignment rules to dynamically assign the task graph. Task mapping parameters, then, are

the description parameters to a mechanism for choosing specific execution orders from an

incomplete static task definition.

1.1.4. Performance Parameters

A d-ALPS configurer is confronted with a mosaic of often conflicting performance cri-

teria. Some of these are explicit, and can be encoded in the application description. These

include task interarrival times, maximum latencies and maximum resource counts. Some

performance criteria are implicit and more difficult to quantify, such as correctness, stability,

reliability, recoverability, and reconfigurability. They may be expected by (or demanded of)

the configurer but their fulfillment does not necessarily hinge on particular configurations:

they are architectural goals as well. Performance parameters delineate both the implicit and

explicit application criteria.
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1.2. Thesis Goals and Organization

This thesis describes efforts that have been motivated by the general objectives of

research into task distribution in the context of an ALPS architecture. As a first stage of this

research, this thesis provides a presentation and representation of the scheduling and alloca-

tion problem in terms of the above parameter classification and presents methodologies for

siudving task scheduling and allocation. The overarching goal is to provide an investigation

framework which is useful to both a designer/analyzer of an ALPS architecture (an architect)

and a configurer, who will utilize an available underlying ALPS architecture to generate

specific application instantiations of that architecture. The results that have been derived

from initial use of these methodologies are of more than passing interest. Where appropriate

and relevant, those results will be presented.

The organization of this thesis is as follows. Chapter 2 introduces the basic categories

of allocation and scheduling methods- enumerative, graph theoretic, and heuristic- and

then presents some example scheduling methodology/system pairs. These examples demon-

strate how schedule generation and analysis is performed in the context of both simpler,

static architectures, such as processor pipelines and more general processor networks. The

goal of this chapter is to delineate the classification boundaries of the d-ALPS

scheduling/system pair.

Once the general background information is presented, an introduction to the specific

problems of scheduling in a d-ALPS environment is givcn. This takes the form of an inves-

tigation of the four classes of parameters which describe the dimensions of the scheduling

problem in an ALPS-specific context.

Chapter 4, "Problem Setup," introduces four analysis methodologies that will be

presented in subsequent chapters. Central to this introduction is a presentation of the basis

and objectives of each methodology and a discussion of how each methodology can be used
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by an architect and a configurcr. The next four chapters discuss each methodology in detail

and present examples.

Chapter 5 presents a set of methods for statically analyzing task parameters by them-

selves and in conjunction with some system and performance parameters. An architect can

model the impact of designed-in node limitations such as communications capability on

example applications. For a configurer. the techniques provide a delineation of minimal and

performance-optimal resource allocations; a feasible allocation typically lies between these

bounds.

Chapter 6 presents a method for generating and evaluating task schedules on a

hypothetical architecture which can distribute and process tasks with no overhead. Given a

complete description of an application task graph and a composition of that simplified archi-

tecture, scheduling states can be enumerated which demonstrate the various ways that tasks

can be scheduled in order to buffer instantaneous demand for resources. The approach is

modeled after schedule analysis techniques for static, pipeline processors, introduced in

chapter 2. Its objective is to highlight the complexities of schedule and allocation analysis in

the d-ALPS context and justify the use of simulation-based analysis to both an architect and

a configurer's

Schedule simulation, presented in chapter 7. allows an architect to investigate mapping

parameter alternatives in the context of a task graph and an architecture. It also allows

major architectural assumptions which impact statically and dynamically on a schedule to be

modeled in. A configurer can make a first-pass estimate of the viability of a given

configuration: if this relatively inexpensive technique demonstrates that the task graph is exe-

cuted with unacceptable performance, it will not be necessary to submit the task

graph/allocation to more detailed architectural simulation. Given the specification for the d-

ALPS support architecture, the configurer has no choice of mapping procedures that can be

I
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applied in a particular configuration. At some point, though, the configurcr will be provided

with ALI'S architectures which contain mapping alternatives. The schedule simulator will

be useful as a first-pass analysis of those alternatives to determine which are most appropri-

ate for the particular application.

Chtpter 8 presents detailed architectural simulation as a means of generating and

evaluatingz configuration allocations for d-ALPS. Architectural simulators that model the d-

ALPS specification in Appendix A are key to evaluating the efficiency and overhead of this

architecture. These simulators can provide a basis of comparison of this architecture to

alternative ALPS architectures, as wcll as to other task processing architectural approaches.

The thesis conclusion, chapter 9, reviews how the overall goals of d-ALPS architecture

research have been served by the development of analysis tools and methods. It summarizes

the objectives and achievements of each methodology and presents a framework for future

development.



CIIAIFER 2

Background

In order to frame the scheduling problems inherent in the ALPS approach, two types of

background information are necessary. First, allocation and scheduling methods which fall

into the general categories of enumerative, graph theoretic, and heuristic will be discussed.

An explanation and example of each of these types of analysis will be presented. Second,

scheduling and allocation techniques that are employed in a number of example systems will

be presented. These example systems fall under problem domains ranging from single-

purpose, static allocation to general purpose, dynamic allocation. The analysis techniques

and algorithms used (at run-time) to generate the operation schedule or allocation vary not

only with the amount of up-front information about the tasks, but with the costs that would

be involved in seeking and generating optimal scheduling solutions.

On the low-end, static pipelines are presented. Static pipelines use a static, centralized

and predetermined control strategy which takes into account the enumeration of task arrivals

and collisions. This control strategy generates optimal schedules that can be implemented

efficiently. In this structure, queueing can be employed to maximize utilization of proces-

sors or allow an application-driven schedule. In this case virtually all salient information

about the individual tasks is provided. An enumerative scheduling technique is employed.

This example of low-level, deterministic task scheduling is complemented by an example of

static resource allocation: register allocation to local variables, performed by optimizing ccn-

pilers. The salience of this example is that it presents a method for state generation and

alternatives enumeration for resource assignment in much the same way that the pipeline

example provides methods for enumerating task initiation alternatives. A graph-based

-11- I



-12

representation is employed and a commonly used graph-theoretic algorithm is used to gen-

crate allocation alternatives.

Moving up one level of granularity are tasks that are presented with information about

their requirements, but the system is not given a schedulc of arrivals of these tasks. A dis-

tributed system for real-time task processing is presented. This system guarantees the

scheduling of tasks so that specified time deadlines are met. This system uses distributed

data about the load on individual processors to determine where to send tasks so that their

execution will occur before a deadline is met. Moreover, the execution of tasks that have

just arrived will not affect the previously made promises of deadlines being met by tasks

introduced and scheduled earlier.

2.1. An Overview of Allocation and Scheduling Analysis Techniques

2.1.1. Graph Theoretic/Enumerative Models

Graph theoretic techniques provide a framework for the representation of task schedul-

ing and allocation problems and the generation of solutions. They transform these problems

into well-studied but computationally unattractive problems of graph partitioning, graph

coloring, longest path searches, etc. The advantage of these techniques is that the space-time

problems of allocation and scheduling can be visualized, and well understood combinatorical

techniques can be applied. The two disadvantages are that devising an acceptable represen-

tation that includes enough salient information about the tasks and the target architecture is

not easy, and that once a model is produced, it is usually unsolvable (or impractical to solve)

because of the exponential growth in the number of states to be evaluated. Enumerative

techniques rely on graph representations as well as more standard representations (state

tables, Gantt charts, etc.) and use a variety of techniques to enumerate scheduling alterna-

tives. These representations can be made more precise in modeling important task and
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system information by expanding the representation to include detailed, information as addi-

.ional states but after exhaustively enumerating of all possible solutions, rely on computa- -

tionally e xpensivc searching and scoring functions.

An example graph theoretic approach for task allocation is the network flow graph

model. Here, task initiation sites arc represented as sources and task completion sites are

sinks [Sion77]. Each subtask in the task set is represented by a node and the interconnection

of subtasks is represented by links weighted by the interprocess communication costs

between the two subtasks (fig. 2-1(a)). In addition, each processor is assigned a graph node

and links are drawn to each subtask. The weight of these links is determined by the cost of

executing the subtask on all of the other processors. For a system with N processors, the

contribution of subtask 4, executing on processor x, to the link between xi and that subtask

is - E,I) , where E(A .x) is the cost of executing subtask A on processor x, and the

E (A. XkCit)
contribution to the links between A, and all other processors xk.., is (N1) Cuts

AO

Figure 2-1(a): An example task set with interprocess
communication costs denoted by link widths.

I
I
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through this network must be made so that in each region there is only one processor (fig.

2-1(b)). By minimizing the sum of links that arc broken by cuts, the minimum cost for task "

execution can be found. The proof of this is as follows. Thcre are two types of costs taken

into consideration: E(i .r) and CO (i, x, j, y), the cost of the communication between subtask

i resident on processor x and subtask j resident on processor y. The inter-process commun-

ication costs between co-located subtasks are assumed to be zero and these subtasks will be

in common regions in the cut graph. All other subtasks will be across a boundary from A,

and the IPC cost will be taken into considcra.on. The execution cost E(A.,,x,) will be contri-

buted by the sum of the broken links which define the apportioning of the graph; this is why

Figure 2-1(b) A task set/rocessor ntok h

I

~I

cuts represet assignmento utss rcssor s

x2I

Figue 21(b) A askset/rocsso netork Th
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the execution cost weights are opposite-sign.

A significant obstacle in this approach is the need to make substantial simplifying

assumptions in order to coerce both a set of tasks and an operating cnvironment into this

representation. In this example precedence constraints and concurrencies are not explicitly

accounted for. In addition, the model would have to be significantly augmented to represent

the subtask timing. An example of a system simplification that is made is that interprocess

communication is simply assigned a cost and that cost is assumed to be independent of the

nature of the communication: whether it is a single transfer or a series of communications.

2.1.2. Heuristic Models

Heuristic techniques are those which apply general servicing, partitioning, or delaying

rules to specific problems. Their use is motivated by the observation that optimal solutions

are difficult to derive and are often impractical in real systems, especially when runtime vari-

ables such as memory and communications contention must be included and timing estimates

become degraded. Heuristic algorithms have met with varying success. The distinguishing

features in heuristic approaches are their complexity, or number of factors they take into

account, and the performance improvement they offer over a large set of tasks; scheduling

and allocation performance improvement can be measured as a ratio of the performance of a

schedule derived via heuristics to the performance of an "optimal" schedule, using as a

measure of performance some combination of the criteria the heuristic biases towards (task

completion, utilization, etc.) and the costs incurred by the heurisic-generated schedule.

A heuristic approach for task allocation in systems with time-critical tasks has been

proposed by Ma [Ma84]. His approach seeks to balance processor utilization, minimize

interprocess communication by colocating tasks that share information, and meet the time-

critical task requirements. Each full execution of the task is called a processing thread and



16

it is the port to port (PIP) execution time (start to end of thread) which is specified to the

system. The contributing factors to the PiP time are thc task execution time, the qucueing

delay time (QDi) due to multiprogramming of the processors, and the interproccss commun-

ication (PC) The optimization function that results is simply a minimization of the contri-

buting cost factors. A task preference matrix denotes the exclusion of certain subtasks from

particular processors: a task exclusive matrix prevents large-instructioned or frequently

enabled tasks from being co-located to reduce QDT. A coupling factor matrix biases

towyards co-locatin, tasks with large IPC. A task redundancy matrix allows for multiple

coFics of a task for re-allocation or low-cost re-invocation after faults. These problem

definition matrices arc fed to a task allocation model 'hich is a branch and bound tree

search based algoriihm. An optimum olu'lun is generally not feasible, as Ma asserts it is an

N\p hard problem, but the con-traint matrices defined above limit the breadth of the search;

in a static implementation, the up-front, one-time cost of finding this solution would be

acceptable if the schedule could then be hard-coded in the system. For problem analysis

on-the-fly, Ma proposes that this allocation algorithm be performed by preprocessors,

resources especially dedicated to scheduling. The first preprocessor generates the constraint

matrices and the second performs the search.

The heuristic Ma employs seems to ignore current resource state information which

could dramatically affect the performance of implemented of allocation decisions. If this

information is to somehow be included in the schedule generation heuristics, Ma does not

indicate its role or how such information is gathered. It is conceivable that previous alloca-

tion decisions could be saved to approximately model the state of the system but this would

limit the algorithm to a single task server; the algorithm would require distributed informa-

tion gathering and analysis mechanisms to be implemented at each task initiation site.
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2.2. Pipelines

A straightforward example of the application of enumerative scheduling techniques is

cmplo.cd in the scheduling of processor pipelines. A task is described as a sequence of

visits to independent proccssing stages. (fig. 2-2). The task is broken into independent units

of appr,'ximatelv equa, execution time. At each stage some set of operations is performed

and the r,:xt st 2.e is invoked. In a linear pipeline, each stage is passes results to an adjacent

stae: in a more cencral case, results could be passed to a number of stages and can be fed

hack to earlier stages as \&ell. An assumption is made that each stage in the pipeline

requires a standard unit execution time; longer stages can be broken into virtual stages, each

requiring a unit execution time. In the baseline case, data is injected into the pipeline and

when it exits the pipeline, new data can be presented to the system. The goal of pipelining,

though. is to send data (initiate tasks) as often as possible by using earlier portions of the

pipeline for new tasks while older tasks are being processed by later stages. To this end, a

schedule must be conceived which allows data to transit to each processor with no danger of

colliding with data from previous (or subsequent) arrivals.

Processor
Buffer

input Otu

11P 2 P 3,_u tp u

Figure 2-2: A linear pipeline.
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For linear pipelines (fig. 2-2), scheduling presents little difficulty, provided the stages

take equally long to execute: a new task can be presented to stage I as soon as that stage is -

finished with its current task and has passed it to stage 2. From an implementation point of

view, this means that data is passed one stage at each (system) clock tick. For nonserial

pipelines, and most evidently, for those in which physical pipeline stages are reused (recircu-

lating pipelines), the scheduling is more complicated (fig. 2-3).

The job sequencing problem in pipeline scheduling, then, is to schedule tasks awaiting

initiation in order to avoid collisions and to achieve a high throughput. The throughput of a

pipeline system is the rate at which data is presented to the system, the implication being

that data leaves the system at the same rate. It can be expressed as:

TI = n
k - +(n - l)T

where k i the number of stages of the pipeline, T is the clock period of the pipeline, i.e. the

basic time required for each processing element to execute (data movement time is included

Processor Buler

lnrput Output

M ulti- li

plexor

P1 P2 P3a-2

Figure 2-3: A recirculating pipeline in which
results from stage 1 is fed forward and results

from stages 2 and 3 are fed backwards.
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in this measure), and n is the number of tasks being processed during the period

k T + (n - 1)T; when the pipeline is full, the throughput is simply 1. Two performance cii-
T

tena, latency and throughput, play a role in determining how to formulate a schedule.

A representation of a pipeline scheduling problem is provided by a reservation table

(table 2-1). In this space-time view, processing element P, is required to execute at

timesteps 0, 3 and 6 for each task initiation. In the language of pipeline processors, the

hltncy of a pipeline is the number of time units between two initiations.' For static, linear

pipelines, the latency can be one time unit. For nonlinear pipelines, where processing units

are re-used, or for pipelines with varying execution times, the latency may be a constant (1

or larger for static, single-functioned pipelines) or it may be a sequence. That is, the latency

can vary between successive initiations (task arrivals) to most efficiently map pending tasks

onto processors while avoiding collisions. A control strategy is a procedure to choose a

latency sequence that ccles. The criteria in choosing a latency cycle is to choose one which

maximizes throughput and avoids collisions. This is done optimally by choosing one which

has the minimum average latency (the average of the inter-arrival times of the task initiations

in one latency cycle). A nonoptimal strategy is to choose a cycle which minimizes the

Reservation Table

to1 t 2 1 13 14 15 6 17
P, X X X
P 2  X X 

P 3  X X X

Table 2-1: An example reservation table for the pipeline in figure 2-3.

In the language of the network world, this is the interarrival time.
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latencv VMtween the most previous arrival and the current arrival; this is intuitively

equivalent to a greedy strategy in memory allocation in which at each step a locally optimal

or Mneficial decision is made, regardless of the downstream consequences.

A procedun for finding and enumerating latency cycles and detecting disallowed cycles

is presented in IHwanS4]. A row on the reservation table represents the allocation of a task

on a physical proccssor. For each row of the reservation table, the distance between marked

(reserved times) represents a possible collision. Multiple entries on the same row indicates

that the task reuses that physical resource (processing element) and once the task has been

initiated it will require that resource at the time stages indicated on the reservation table. A

collision will result if a subsequent task is initiated so that it requires the resource at one of

the times that the current task requires the resource. If the spacing between two reservations

on a row of the reservation table is s then a collision will result if two tasks are initiated

with a latency of s, those two tasks to not have to be adjacent arrivals to collide. The

method used to determine latency cycles is to create a vector (the collision vector) which

indicates the feasible latencies that may be chosen:

C = (C ...... C2C),

where C, = I if there is a reservation table row distance of i. The initial collision vector

then corresponds to the state of the system where the first arrival has been presented, and

subsequent arrival are limited to the zeros in the collision vector. The collision vector is

then shifted to the right, a zero shifted into the left-hand-side, until the rightmost zero is

shifted out (a zero shifted out indicates that an arrival is allowed at that time, i.e. if at the

third shift, a zero was shifted out, then a latency of three would be allowed-there would be

no collisions. The new collision vector (the old one shifted until the first zero) is bit-wise

ORed with the previous vector to represent subsequent collisions that are possible between

the next task and the previous tasks. The new colision vector represents a new state in the



21

system: a state transition diagram enumerating each collision vector linked with an arrow

indicating the latenciL-s between two arrivals which bring the system to that state is then

drawn (fig. 2-4). From cach collision vector all subsequent vectors (states) new ones can be

derived anhl these states can be linked into the transition diagram. Eventually a trail of states

\x ill connect to a previous state or with itself. A cycle in this state diagram indicates a con-

trol strategy, a latency schedule that will not induce collisions among different tasks. The

transitions, laNlled wkith the latency required to move between states, indicate this schedule.

The optimal schedule (emboldened in fig. 2-4) is the cycle which has the minimum average

latency, that is. the sum of the latencies at each transition divided by the number of stages in

the cycle. Since any closed path is a feasible schedule, a state can be visited any number of

times. A simple schedule is one in which each state is visited only once: since there can be

many optimal schedules. it may be advantageous from a control implementation point-of-

F =(1,2,3.6)

C 11100100 111 00100

5 , 11 0 1 1 1 10110

4 151111111018

11101110 1,

Figure 2-4: A collision vector state diagram; the
arrows indicate the control strategy with the

minimum average latency.

I
I



\iew to choose simple schedules over complex ones.

The above method is a straightforward state enumerative technique which allows not

only the production of collision-free arrival schedules, but allows a maximum throughtput

schedule to be generated. It is applicable to static pipelines which are nonlinear. An exten-

sion to this method can be applied to multifunction pipelines, pipelines which can operate on

ditferent functions by interconnecting different subsets of stages for ecah function in the

pipeline. The scheduling problems of a pipeline processor which can perform many func-

tions (execute p different tasks) can be represented by p overlaid reservation tables. A

static, multifunction pipeline is designed to perform a single-type task for a while and then

perform a task of a different type after a minimum waiting period. An optimal latency

schedule for each of the task types is determined and a control structure determines the wait

time necessary between two different typed tasks. Each task to be executed is tagged with

the particular function that is required to distinguish it from arrivals of the same task-type

and arrivals of different task types. The extension to the single-function algorithm is that an

arrival can collide with a task of the same type or a different type. Colision vectors which

describe the collisions possible between any two tasks can be generated from the overlaid

reservation tables: there are p2 collision vectors each with length n for a system of n stages

to execute p different tasks. The process of generating individual latency cycles is similar to

the static-pipeline method and is described in detail in [Hwan84I.

The significance of this extension is that there is an automated method of generating

schedules for the mapping of multiple tasks onto fixed hardware pipelines which implement

the specific functions by transferring data across dedicated interconnections. The subtask

times are completely specified: in fact, the processors operate at ratios of a basic pipeline

cycle time. AU communication, whether between adjacent pipeline stages or spanning multi-

ple or parallel elements, requires dedicated resources and equal time per transfer. Finally,
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the control structure is static and centralized. Once tasks are introduced to the system, their

travails are predetermined. The above control strategy determines an optimal latency struc- -

lure of tasks of different types so that throughput of each task type is maximized.

An example of a static, reconfigurable pipeline is the TI-Advanced Scientific Computer

(.-\SC). This pilvlined arithmetic processor allows instructions which require different stages

to take different data paths through the pipe. The control for this processor is contained in a

ROM accessable by execution logic and provides the route through the pipe for each instruc-

tion type. The base address for this information is provided by instruction decode logic.

\When several instructions of the same type are present, for example when a vector operation

is specified, the instructions can be pipelined through the hardware. The latency cycle for

these streams is specified in ROM. When instructions can be overlapped, average speed

increases from 0.5-1.5 MFlops to 3-10 MFlops.

2.2.1. Reservation Table Optimization Through Delay Insertion

For single functioned pipelines, the optimal latency cycle is optimal with respect to the

given reservation table. As an improvement in throughput, delay elements, or buffers, can

be inserted in each stage. This has the effect of modifying the reservation table to allow

tasks to interact with less collisions. The maximum achievable throughtput is attained when

all elements of the pipeline (all processors) are fully utilized. The method of modifying the

table as described by [Davi78] is a bit involved but seems to work. First, a set Gc is gen-

erated from the chosen (optimal with no inserted delays) latency cycle C. consisting of the

inter-arrival differences, i.e. the time between any two (not necessarily consecutive) initia-

tions. Second, a set Gc mod p is computed by modding each element of Gc with the period

of the cycle C and removing duplicate members. Finally, the reservation table can be

modified by inserting delays to eliminate inter-row distances which are members of the set

I
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latency cycle equal to the maximum number of entries in any row of the reservation table.

The reservation table is then modified by adding delays to make that cycle allowable. Alter-

natively, some application-specific cycle (a pre-determined schedule unrelated to the collision

problems in the pipeline) can be implemented, i.e. made allowable, by adding delays to

remove any conllicts between the forbidden latencies in the reservation table and the inter-

arrival times in the specitied cycle. It should be noted that adding delays contributes directly

to the task end-io-end time/throughput tradeoff: while processor utilization and throughput

are maximiized, the end-to-end task time is increased via queueing.

2.2.2. Extension to Reconfigurable, Dynamic Pipelines

In a static pipeline, all initiations are subject to the constraints listed in a single reser-

vaiion table or one that is comprised of overlaid reservation tables, one for each function the

pipeline can support. Transitions between initiations of different types are costly: the pipe

may have to empty before a task of a different type can be initiated. In a dynamic pipeline,

initiations of different typed tasks can occur simultaneously, and complex scheduling stra-

tegies allow multiple numbers of initiations of different functions in the same pipeline. A

more complicated model of pipelines (one with bypass structures to enable certain tasks to

jump over unused stages as well as interconnection control, routing and queue management

functons) would have to be incorporated to implement optimally scheduled, reconfigurable

pipelines.

2.3. Graph Coloring and Application to Resource Allocation

A technique for defining resource contention and minimal allocation is utilized in

optimizing compilers to allocate high-speed registers to program variables. The essential

problem is laid out as follows. A subroutine has a number of local variables each having a
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lifetime defined as the timc at vhich the first write is performed on that vaiable to the time

when the last read is performed on the variable. There may be variables present which are-

accessed frequently and others which are defined but not acccsed at all. Given a processor

with a number of high speed local registers, it is desirable to make efficient use of these

re :isters b allocating as many of these registers to local variables as possible while allow-

ing the allocation of a register to one variable to not interfere with the later allocation of the

same register to a new variable. That is, if a variable is first written to at instruction A and

is last accessed at instruction A , 5 then a new variable which is first written to at an

instruction later than A - 8 can be assigned to the same local, high speed register. A table

instructions

I I

a b c d e f g variables

Figure 2-5: A lifetime table for variables a through g. The
y-axis represents subroutine progress along an instruction stream.
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can be constructed which is not unlike the rescrvation table for pipeline processors, charting

the lifetime of each local variable (fig. 2-5). Given a fixed number of high specd registers

and an ample amlount of stack storage for the remaining variables, the goal then is to deter-

mine how few storage locations are required to provide a noninterfefing memory allocation:

the more efficient the memory allocation, the more variables can be mapped to high speed

registers.

A graph representation is chosen to model the local variable timing relationships. A

graph is a collection of edges and vertices; a unique vertex will be used to represent each

local variable, and edges will be used to indicate the timing relationship among the local

variables. First, a vertex is drawn for each local variable. Second, observing from the local

variable lifetime tahlc an edge is drawn connecting vertices representing variables which

have overlar, ir 1,fetimes. That is, if a local variable foo is born (is first written to) at

instruciion A and dies (is last read from) at instruction A + 8, it is connected to any variable

b(:r which is born before instruction A + 8 and dies after instruction A (fig. 2-6). The final

Figure 2-6: An edge-vertice lifetime relationship between
variables. Connected vertices indicate overlapping lifetimes.
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step in this approach relics on the concept of graph coloring to determine the minimal allo-

cation of memoB areas to yield a noninterfening mapping to local variables.

At this stage, the concept of graph coloring is used to determine minimum allocation.

The graph coloring problem, simply stated, is to find the minimal number of colors required

to color the vertices of a graph so that no two adjacent vertices have the same color (fig. 2-

7). The graphs are limited to simple graphs, i.e. there can be no edge between vertex foo

andi itself. because no coloring scheme is possible and it is not necessary to represent the

fact that ile lifetime of variable foo spans itself. There are a number of proofs and algo-

rithms related to graph coloring; an introduction can be found in [Mott83]. An algorithm by

Welsh and Powell is presented to color a graph. Heuristics to find the minimum coloring

are (1) to note that triangles always require three colors, and (2) that the degree of a particu-

lar vertex is d then at most d colors are required to color the vertices adjacent to that vertex.

Assuming that the number of local variables is relatively small, a plausible coloring can be

found: if it is not minimum, the allocation approach will not be optimal but will still work.

0

Figure 2-7: A coloring of the variable graph.
Variables with similar colors (shading) can

be assigned to the same register.
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After the graph is colored, the number of colors reprsents the required memory loca-

tioii; to ensure isolation of variables.2 If that number is less or equal to the number of local

registers. then all variables can be placed in local registers provided that the allocation is

controlled bv the knowledge of when that register is used for which variable. If that number

is greater than the number of local registers, then a subset of the color-groups can be

mapped onto local registers. As a further optimization, local variable groups which have

higher expected access rate could be mapped to high speed registers. Alternatively, the

coloring algorithm may bias grouping according to access rate so that highly accessed but

independent local variables are placed in the same group; that group could then be mapped

to a high-speed register.

The register allocation problem introduces a graph representation for demand (vertices),

interrelationship of demand (edges) and supply (colors). The difficulty in establishing a

minimal allocation can now be seen as directly related to the complexity issues of a well

known graph problem. From a process-scheduling point of view, the register allocation

problem is akin to the problem of statically assigning tasks to (homogeneous) processors so

that the minimal number of processors is used. While an optimal (minimal) allocation can

be found, the assignment method can not be extended to periodically initiated tasks unless

the representation was changed and the underlying graph coloring problem redefined.

2.4. Bid-based Task Scheduling

A fundamentally different approach to task scheduling and sequencing is based on two

underlying assumptions. First. task arrivals are not known in advance: the system is a gen-

eral purpose task processor in which requests for processing are made at random times. A

task is characterized, then by its start time, computation time, deadline (when it is required

2 Unfortunately, it ts difficult to prove that a given coloring scheme for a graph is the minimal one.

I
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to complete), and possible its reinitiation time. In addition, it may have enumerated resource

requirements and internal precedence constraints. When the task is created and compiled,

the precedence and compute time can be encoded; Ahen the task is invoked or requested, the

deadline and possibly the task's periodicity (reinitiation time) can be specified. From the

individual processing node's point of view, tasks may arrive at the node by some process

invocation service which initiates tasks which are scheduled periodically. Alternatively tasks

may arrive as a result of being shipped to the node by some other node.

2.4.1. Structure or the Schedulers

Each node in the svstem has a scheduler that is identical to schedulers on other nodes

(except for some node-specific information, such as processing capability). When a task

arrives the node attempts to schedule it locally, i.e. it checks to see if it has enough surplus

processing time-processing capacity above the time alloted to jobs already guaranteed-to

execute the task task so that the task's deadline is met. If it is able to meet the deadline then

the task is scheduled locally and is considered to be guaranteed to meet its deadline. If the

local node can not meet the task's deadline then requests are made to other processors to

accept and guarantee the deadline of the task. Tasks that are accepted and guaranteed

locally are fed to a dispatcher service. The dispatcher monitors the run queue of the local

processor and invokes the task with the earliest deadline. Tasks that can not be accepted

and guaranteed locally are given to a bidding service which queues up tasks that must be

farmed out. Though these tasks may eventually miss their deadlines, the tasks that have

already been guaranteed will not run late due to the arrival o," new tasks.

The heart of the distributed scheduling process is the node interaction which permits a

node which has tasks that need to be scheduled but has no excess capacity from which to

draw. The scheduler on the node with tasks to farm out broadcasts a request for task servic-
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ing, reccives bids for that task by nodes which have excess capacity and makes a decision

on ,%here to send that node based upon the bids received. The request for bids includes the-

task's computation time, deadline, size (for estimating communication and memory alloca-

tion cost.s), the time at Mhich the bid request is being sent, and the deadline for bid requests.

This deadline is set so that nodes Ahich are processing a number of bid requests can decide

whether to process this request: factors in this decision include time for nodes to process the

bid, time for the requester to evaluate these bids, and time remaining for the task to be sent,

scheduled and executed. Some of these factors are estimated bid processing times, which

include communications costs which are factors of the load on the network: the point here is

that this deadline is composed of estimates. The nodes that receive bid requests must decide

,, hcthcr they can accept the task and guarantee that it will meet its deadline. This decision

rests upon several factors: the load on the node, the estimated computation cost of the bid-

for task. and the estimated time at which the task will arrive. Once a decision is made it is

returned to the bid requester for bid processing. The requester receives a list of bids from

vanous sering nodes which give an estimate of their ability to process the task. This esti-

mate is the surplus compute time at the node between the expected arrival time of the task

and its deadline. The bid requester then chooses among the bidders based on these surplus

estimates.

One extension to the bidding scheme is to attempt to guarantee tasks that have pre-

cedence constraints. Suppose three tasks A, B, and C have the precedence relation

A < B < C (A precedes B which precedes C), and A and B have been guaranteed on two

different nodes, I and 2. The site at which C arrives, 3. attempts to guarantee it. This is

done by assuming a start time of the task of D8 , the (already guaranteed) deadline of B. If

C can not be guaranteed locally at node 3, the node will send out requests for bids for C but

will ask bidders to return the bids to the node which owns and has guaranteed B, node 2.
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Node 3 w'ill then ship C to node 2, presenting it with the task of resolving bids for C. Node

2 %kill attempt to guarantee C locally; if it can not. it will attempt to modify the deadline it

has imposed on B so that the start time of C will be pushed earlier. If D9 can be reduced

so that B is still guaranteed and C can now be guaranteed locally, C is scheduled locally. If

C can not be guaranteed locally even after modifying B, node 2 wkaits on incoming bids for

C and chooses the best bidder. When that bidder is informed that it is to receive and

guarantee task C it is also given the new start time of C.

2.5. Conclusions

The above example systems demonstrate the use of graph theoretic, enumerative, and

heuristic approaches in modeling allocation and scheduling problems. Heuristic approaches

are more popular in dynamic scheduling applications where information about tasks and task

arrivals is limited, information about the state of the system must be estimated, and the time

to make the scheduling decisions bears directly on the processing load on the system.

Enumerative and graph theoretic techniques are popular when system interconnections and

task schedules are known (or are to be determined statically). The time to generate

schedules or allocations grows dramatically with the size of the problem, and optimal

schedules may degrade or, in fact be forbidden, if the system or task description does not

match that with which the schedule was generated; these techniques are less popular with

dynamically scheduled systems. The analysis methodologies presented in this thesis will

make use of scheduling techniques similar to control strategy generation for pipeline proces-

sors and will consider allocation decisions similar to those seen in the graph theoretic-based

register allocation example. The heuristic-based task assignment system reviewed in this

chapter is a useful introduction to the heuristic-based task servicing disciplines that will be

prescntcd in chapter 7.



CIIAIYrER 3

Problem Specification

Scheduling and processor allocation can be considered most generally as the mapping

of a set of tasks onto a system of processors. The central scheduling and allocation prob-

Icm. regardless of the particular implementation of an ALPS architecture, is the efficient and

effc,'tive distribution of an application specific set of tasks onto a pool of resources.

Sc'hcduling acts on an application task graph that has been described by task definition

parameters. The task graph is mapped onto a processing environment, characterized by

(cJrtccrur! paIrwnercrs which include the composition of resources and the specification of

the underlying support architecture. The mapping is facilitated by mapping parameters

xl h. ,.hile conserving the basic task definition, generate execution orders and assignments

W nder the auidance of task servicing heuristics. The goal of this mappini, is to facilitate the

execution of a task graph with some defined level of performance. The performance criteria

can be described by performance parameters. The above process is illustrated in figure 3-1.

Scheduling and allocation issues, as applied to ALPS, is a problem of operating within broad

boundaries imposed by the application task to find a combination of task definition, architec-

tural, and mapping parameters which yield an execution order which satisfies performance

criteria.

The goal of this chapter is to transform the discussion of the general problems of

scheduling and allocation into a discussion of the mechanisms and parameters behind

scheduling and allocation in ALPS. Once the reader is equipped with this background, sub-

sequent chapters will present methodologies for investigating scheduling via manipulating

these parameters. This chapter will first present two perspectives on the investigation of

- 32 -
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task graph
detailing parameters

task definition
parameters

Application
task definition

performance task mapping
criteria parameters

i architectural
parameters

Figure 3-1: The ALPS configuration is composed of
task definition, architectural and task mapping
parameters. The choice of these parameters is

guided by performance criteria.

these parameters: the configurer's and the architect's. Following will be a discussion of per-

formance parameters which highlight the contrasting objectives of the architect and

configurcr. The task definition, architectural and mapping parameters will be presented in

subsequent sections. The architect and configurer have different motivations in investigating

these parameters; these motivations will be discussed in each section.
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3.1. Parameter Investigation Perspectives

t'crft rmance, as broadly defined, encompasses straightforward, specific demands on the

application architecture designated to fill a particular application. These demands can

include requirements on latency (how long it takes frr tasks to complete), throughput (the

rate at Mhich tasks must be processed), and system size (how many resources can be alloted

to tile application because of size or power constraints). Given an underlying support ALPS

architecture such as the d-ALPS architecture, a "configurer" should be able to either deter-

mine a configuration architecture that meets these explicit performance criteria or determine

that the requirements are too imposing for any d-ALPS configuration. From this perspective,

the confiurer would investigate the task definition, system and mapping parameters that can

be manipulated by the configurer. The configurer can not change the underlying architecture,

but can constructively modify the task definition, can vary some parameters of the

configuration architecture, such as resource pool composition, and may be able to choose

from a limited number of ways in which the task mapping is effected. A constrained inves-

tzaion of the parameters which affect scheduling and allocation is desired by a configurer

so that the configurer can either decide on a configuration that meets explicit performance

criteria or can decide that such a configuration is not possible.

The "architect" desires to investigate the underlying scheduling and allocation prob-

lems as they are addressed by a range of architectural approaches. That is, the architect will

not presume that the only manipulable parameters arL those imposed by single ALPS archi-

tecture such as the d-ALPS architecture. Furthermore, the architect is interested not only in

application-specific explicit performance criteria, but general performance expectations of the

ALPS architectural approach. These expectations can be broadly labeled implicit perfor-

mance parameters, and may include efficiency (how many resources are required over some

ideal, minimal allocation), fault tolerance (how the architecture responds to component
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failures), and stability (how the architecture rvsponds to slight deviations in presupposed tim-

ings and requirements). The architect's perspective should be supported by an uncon- -

strained invcstigation of the parameters of a particular architecture in addition to an investi-

gation of alternatives that may not be encoded in a particular architecture.

3.2. System Performance Specification

There are two views of system performance when examining scheduling and allocation

issues. The first view is that the goals of scheduling and allocation are to create a system

Ahich correctly executes the tasks within the bounds of a given set of performance criteria.

From this view, the performance criteria are specified in advance and allocation and control

alternatives are tried until a system which meets the criteria is found. This can be thought

of as the configurer's view. The second view is that regardless of the static performance

criteria (which in this view can be regarded as part of the algorithm specification), there are

mecta-performance expectations that transcend any particular application. The goals of

scheduling and allocation then are to find approaches that have generally beneficial results

and can be applied across an application domain. This is the architect's view. The above

distinctions are made because depending upon one's view of the scheduling and allocation

problem, the relative value and even the definition of individual performance measures will

vary. Each performance criteria discussed below presents challenges to both the architect

and the configurer. The way in which each performance criterion motivates investigation of

the task definition, architecture and mapping parameters will be presented.

3.2.1. Latency

Latency is a measure of the end-to-end processing time of tasks. It is the time that a

frame of data entered the network at a source subtracted from the time the resulting data

I
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Nock reachcs a network data sink.' There may be more than one latency measure if there

are multiple sources and sinks, especially if the task has disjoint parts (fig. 3-2). From the

conligurer's view, the latency may be a critical parameter to the original application; an

allocationschedule must be found that meets this criterion. From the architect's point of

vier latency has avoidable and unavoidable components. There is a minimal latency that

can be found by summing the computation and communications costs along the longest path

in a task raph and addin, the overhead time for associated transactions. Above this value,

lat.'ncy results from intra- and inter-task contention for resources. The architect investigates

efficient dispatching mechanisims which impact configurations characterized by both lightly

and heavily resource contention. This would involve, as a first step, analysis and design of

the components of Lhe underlying ALPS architectural implementation which cause transac-

tion overhead. In addition, the architect wishes to find ways of causing latency to increase

smoothly or predictably with this contention. this is most likely afforded by investigation of

0

Figure 3-2: A task graph composed of two disjoint parts.

This is a network definiuon of latency, and also one which is commonly accepted; it is not to be con-
fused with the dcfiniuon of latency used mi the pipeline world, which is what the network world calls the inter-
arnivdl umc.1
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mapping parameters.

3.2.2. Throughput

The inter-arrival time of data (initiation schedule), which is likely to be part of the task

clinition. implicitly determines the system throughput, in that the entry rate of tasks should,

in the long nin. equal the task exit rate. In the ideal case, tasks will enter the system at

some proscribed rate, and after the "pipe" is filled up, i.e. after the first task is fully pro-

cessed, tasks will exit the system at the exact rate that they entered. Complicating this ideal

case is that task latency mav not be constant when contention is present, and the first task

latency may be lower, due to less contention, than that of subsequent tasks.

From a configurer's point of view, throughput can typically be categorized as a

specification parameter instead of a performance measure, though a configurer may be

interested in measuring the additional capacity that a particular allocation can handle. This

measure will give the configurer some indication of the robustness of the system to tem-

porary interruptions in processing. From an architect's point of view, a general scheduling

goal is to accomodate a significant amount of inter-task contention; a scheduling method can

be tested by specifying a task and then seeing how a system which incorporates this method

responds to larger throughput demands.

3.2.3. Allocation

The categorizing of allocation as a performance measure as well as a system parameter

requires a review of the coupling between allocation and sche!duling problems. Two related

couplings can be posed:

* Given a task set, a minimum latency, a maximum throughput and a scheduling

methodology, find a minimal allocation that will accomodate these criteria.
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* Given a task set, a minimum latency and a maximum throughput, and an allocation,

find a scheduling methodology vhich allows the allocation to accomodate the require-

mcnts.

Though a configurer supplies an allocation via architectural parameters, the allocation can be

view d as a performance criteria in that the configurer tries to find the most efficient alloca-

tion or one which accomodates high utilization of resources. The architect views allocation

as a performance metric in that allocation it can be the basis of comparison for different

scheduling methodologies operating under the same task requirements.

3.2.4. Reliability

In general, any ALPS-based architectural configuration should be resilient to single

point failures in that performance degradation (along many criteria dimensions) should be

measurable and containable with system degradation. The central advantage of scheduling

mechanisms that adhere to a dynamic assignment approach is that at the time of binding a

processor, an' number of system faults may have occurred, but as long as there are

sufficient resources, the task execution will proceed. 2

From the configurer's point of view, reliability is a requirement on the relationship

between a fault in the allocation or scheduling (processor deaths or task deaths/delays) and

the degradation of a performance criteria. Reliability, then, can be codified in terms of the

impact of a particular fault or eventuality on an explicit performance criteria. An example of

this relationship that a configurer could impose is as follows: "If one FFT processor dies,

the system should be able to produce results at the same rate and the latency can increase by

no more than 10%." The difficulty in deciding upon these relationships and finding an appli-

cation architecture that meets them can not be understated.

2 Thc system may crash under a vanietv of circumstances, some tied to the aggregate demand for resources

and srme tied to the pecuiarities of demand synchruruzaLion.

I
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The architect is concerned with finding scheduling approaches which reduce drastic

repurcussions due to site eventualities. Consider an architecture which has N processors and

requires N-I of those processors to marginally process a given task. Reducing site eventual-

ities means ensuring that the system works with a failure of one processor, regardless of the

particular processor that failed. Investigation of these concerns requires a study of the

architectural mechanisms that implement a scheduling method, as well as an investigation of

those methods.

Each of the above performance criteria impacts the investigation of task definition,

architecture and task mapping parameters. Task latency criteria are met by the configurer by

static analysis of the task definition parameters and the allocated architecture. The architect

studies the details of an architectural specification through architectural simulation to deter-

mine how to systematically reduce latency, Testing for throughput requirements by the

configurer is facilitated by architectural simulation; the architect considers task mapping

methods-via schedule simulation---which ensure an orderly execution of task arrivals.

Allocation is the key architectural parameter to a d-ALPS configuration. The configurer

chooses an allocation which allows a system to meet other performance criteria and which

affords a high resource utilization. The architect compares necessary allocations for given

tasks in one ALPS architecture with other architecture classes or other ALPS architectures to

determine the processing efficiency of the ALPS architecture. Reliability and other implicit

performance criteria are directly impacted by architectural and task mapping parameters.

The architect and the conligurer use architectural simulation to study the effects of site even-

tualities. Following is a description of the task definition, architecture and task mapping

parameters. The descriptions include an indication of which parameters are interesting to an

architect and a configuerer.
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3.3. Task Delinition Parameters

The task definition parameter group describes an application task graph. This section

provides a detailed description of the components of that graph and the ways in which the

task definition can be altered to affect the eventual execution order.

3.3.1. Directed Graph Notation

The specilication of a task in the ALPS framework makes use of directed graphs.

Each node in the graph represents an independent subtask which requires a single processing

node to execute. These subtasks typically represent computationally intensive processes.

Subtasks are connected via directed links which not only specify a precedence relationship

among tasks but a communication of data as well. A subtask is initiated once the assigned

processor has received all of the data for the task; implicit in receiving this data is a signal

to execute. 3 The representation is similar in structure to data flow representation but slightly

different in interpretation. Nodes in data flow graphs represent processing stages: their exe-

cution is initiated by the receipt of data, whose flow is implied by links between nodes in

the data flow graph. The data flow world uses directed graphs to represent the flow of data

and control, commonly referred to as "activity," to different processing resources. Directed

task graphs in the ALPS domain represent the dependence of tasks and a corresponding pas-

sage of data. Control flow in the corresponding particular ALPS underlying architecture is

not implied in these graphs.

We will assume that the configurer can not change the fundamental breakdown of tasks

into subtasks. That is, the functional decomposition of the application task into separately

computable primitive operations can not be altered. This assumption is not made because it

is unforseen that the configurer will make a contribution to this decomposition. It is made

3 A data block that is sent to more than one subtask initates multiple subtasks.

• I
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because the scopc of this thesis is to consider how functionally and topologically unalterable

task graphs are mapped onto a described architecture.

3.3.2. Graph Weights

Directed links represent communications that must take place between two tasks. From

a timing cost Point of view, the weight of the link is representative of the amount of data

that must be transfcrred; likewise, the weight of nodes is representative of the expected exe-

cution time of the task. This weighting of Nith links and nodes poses some representational

difficulties. The exact weighting is not necessarily known at the problem definition stage

and may be dependent on the particulars of the target system configuration. For example, the

execution cost of a task may depend on the operating characteristics of the particular

resource on which it is assigned at runtime. A second representation problem is that most

graph analysis algorithms treat either graphs with weighted links or graphs with weighed

nodes. In addition, communication links in this representation combine a system cost (com-

munication time) with a task interconnection and precedence relationship. Modifying the

representation so that the actual communication actions are represented by additional nodes

resolves these problems but introduces some additional problems when relating the task

graph to a representation of its mapping onto an architecture.4 The architect is interested in

using graph analysis tools, such as those presented in chapter 5. The architect can not

change the graph weights, as they are derived from the intersection of the task definition and

the configuration resource pool composition. The configurer can only change the weights by

choice of resources composition, i.e. by changing architectural parameters.

This will be discussed in chapter 7, when the concept of binding is introduced.
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3.3.3. Sources and Sinks

In the ALPS framework, graphs contain sources and sinks which represent interfaces

K'twecn the ALIPS system and the "outside world." Sources operate as task initiators: they

arc invoked, typically bw the receipt of data, and initiate a new task arrival. In d-ALPS, that

arrival. represented by a collection of data frames with a unique arrival number, is then

introduced to the system v ith the implicit demand that it be operated on by processors

assumin,_ roles of the directed task graph. In the d-ALPS specification, the sources are

assumed to operate at fixed rates; the inter-arrival time between task demands is constant. 5

3.3.4. Graph Detailing Parameters

The above section,; described the essential components of the task definition provided

to the configurcr. Within a task definition, there are a number of elements that can be

changed. The task graph representation provides a set of overarching relationships among

tasks that must be conserved, but does not completely specify an execution schedule. In par-

ticular, the representation does not provide scheduling information about inter-task-arrival

relationships. Both an architect and a configurer would want to investigate these changes

because they can affect an eventual execution order. These changes are called graph detail-

ing parameters because they impart static scheduling details to the task graph on top of the

static precedence information already encoded in the task graph. The parameters that can be

changed depend to a great deal on the underlying ALPS architecture. The changes to the

task delinition which are legitimate and have an affect on performance of graphs executed by

a d-ALPS configuration will be investigated. The reader is referred to the d-ALPS

specification in Appendix A for a more complete description of the task distribution mechan-

ism it employs. In addition, those basic changes which could be applied to other underlying

This a-ssumpuon can hc modified to more general task arrival notions without changing the underlying
represntation.
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ALPS architectures Aill be presented.

3.3.4.1. link Ordering

In d-ALPS, a node transfers information corresponding to successor subtasks vd

DMIA-stvle block transfers. Nodes in d-ALPS can not engage in block tanslers of different

information at the same time, but may transfer the same information to more than one place

simultaneously. As a node can engage in only one physical data transfer at a time and as it

may have to transfer a number of blocks of data, there must be some (not necessarily static)

ordering to these transfers. For N transfers of the same information, there can be 0 to N

simultaneous transfers6 of the data to different destinations, and the order of those transfers

could be specified via detailing the the task graph. In d-ALPS, this ordering can not yet be

effected, but could be implemented with minor changes to the graph encoding and servicing

mechanism.

Receiving nodes are subject to a similar serialization. Data transfers represented by

communication links into a node can not occur simultaneously in the d-ALPS architecture

because the node that is the target of multiple receive requests can physically receive only

one data transfer at a ume. The order of the received data blocks could be specified in a

manner similar to that used for outgoing communication links.

The task graph represents data transfers and broadcasts of different information as pos-

sibly concurrent operations. To reflect the mapping of that behavioral description of tasks to

an architecture-specific, implementation ordering, the graph should reflect concurrency only

in subtasks that are plausibly concurrent. From a representation point of view, a set of

graphs can be generated, each of which provides a different ordering of transfers into a

6 It may not be possible or desirable to send to all destinations of the same information at the same ime,

i.e. a logically complete broadcast, though the cost is additional data transfers to those receivers which have not
been addressed.
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node. Each of these graphs would then represent the original task graph which has been

detailed with additional ordering information. A detailed procedure for creating these

rcprcsentations is presented in chapter 5.

3.3.4.2. Link Priorities

In d-AI.PS, a simple mechanism ensures that a single physical node is bound :o a sub-

task. This mechanism is described in detail in chapter 7 and again in Appendix A. One of

possibly several links that mere to a subtask is statically labeled a priority link; when bids

are processed for this link, the receiving node is bound to the subtask. Only the node which

has received the priority link can bid for the remaining links. This mechanism guarantees

that a single physical node is bound and rcqires no control communication between the

receiver of the priority link and holders of other links until those links are bid for. There are

to major considerations with this approach. First, owners of nonpriority links that are

finished before the priority link will engage in futile bidding requests. Second, the node

which has received the priority link before all nonpriority links are finished will be in a

bound-but-not-processing state until all remaining links (and subtasks leading to their even-

tual transmission) are finished. The choice of priority links is encoded in the task definition.

3.3.4.3. Delay and Precedence Insertion

A task graph can be modified to include signals and delays that serve to break up syn-

chronizations of demand and reduce polling. For example, delays can be inserted to equalize

paths of execution that eventually merge. In the d-ALPS architecture, the absence of these

delays does not imply that collisions will occur, as in the case of pipeline processor colli-

sions, but will result in unnecessary polling or processor binding: additional overhead.

While delays can be added anywhere in the task graph without disturbing the functional rela-

tionships among tasks, their insertion at a task behavior specification level, where execution

I
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,:osts are not kno~kn, is problematic.

Delay insertion at the task graph definition level can be thought of as a timing-static

technique for path equalizing or subtask ordering- it is a problematic technique when

specified in an environment khere timing relationships are not fixed or not determinable. As

an alternative, an asynchronous method of performing the same functions is signaling. A

nonoperational graph node can be added which gathers results or signals from one set of

nodes and causes the initiation of another nonintersecting set of nodes. While this represen-

ttion Lives no clue as to how the signal is implemented-there is currently no mechanism

in the d-ALPS architecture to support these signals-it provides a timing-independent

method of svnchronizin subtask paths.

A technique similar to siemal node insertion is precedence insertion. A precedence link

is one which has no data block (communication subtask) associated with it but is treated like

other links. In d-ALPS, as a priority precedence link, it would cause the binding of a pro-

cessor: as a nonpriontv precedence link it causes a bound processor to delay execution until

this signal is received.

3.4. Architectural Parameters

A detailed presentation of the d-ALPS ar-hitectural specification and a discussion of

the high level logical control is provided in appendix A. This specification includes an over-

view of the functional requirements of an ALPS system and provides a detailed presentation

of the distributed internal and network control and communications functions, currently

implemented by interface control units. In order to specify and study ALPS architectures, it

is important to know what the parameters to the system are. Some of these parameters are

obvious. A system configuration is based on pools of similar resources, where the resource

count is a key parameter to that configuration. Some of these parameters are less obvious.

I
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. res-ource intertace control unit (ICU) contains memory used for queucing output results:

the anount of memory available for output (lucucing is, within limits, a parameter specifiable

by the conligurer. Following is a description of the parameters that can be supplied to a d-

\LPS conticuration architecture. Other architectures may allow more or less variability in

the architecture: \while it is not the scope of this thesis to discuss the architecture dcscriptions

that are possible with architectures that have not yet been specified, where appropriate some

proosed dAscrip:ions that an eventual architecture should (or may) allow will be presented.

3.4.1. Resource Pool Size and Composition

The size and composition of the resource pool in an ALPS system gives an upper

hound on the processing capacity of the particular configuration. At minimum, there must

be enough processing capacity to handle the processing demands set by the task graph and

arnval rate of tasks. This architecture-independent, baseline allocation can be determined

statically via procedures described in chapter 5. The desirability of allocations which are

near this minimum lies in the small node count: processor utilization will be maximized at

the expense of task latency and response to unanticipated delays and innefficiencies. It is

difficult to derive minimum feasible allocations-allocations which meet execution perfor-

mance and correctness criteria and account for scheduling and control overhead.

In the most simple mapping case, each subtask in the directed task graph will map to a

distinct resource, and individual resources in the architecture will be single-purpose proces-

sors (hig. 3-3(a)). This allows a simple mapping scheme because each resource can only

assume one "role" in the task. If we generalize slightly, there may be many subtasks in the

algorithm that require the same processor type; single-typed processing nodes in the architec-

ture nov. may execute any ol those subtasks that require that single type (fig. 3-3(b)). If we

generalize some more, some processing resources may be able to execute as many of the
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Figures 3-3(a) through 3-3(c): A direct mapping can be made
between a uniquely typed subtask and a uniquely identified
resource; or, subtasks of the same type can be mapped to

single-typed processing nodes; or, subtask of different types
can be mapped to multiple-typed processing nodes.



processing types required by the task. A multiple typed node can map to any subtask in the

graph \,%hich requires one of the resource types that this node can function as (fig. 3-3(c)).

The allocation of resources refers to the type and composition of the processing (and

communication) resources assigned to a particular application architecture. The performance

of those resources refers to the individual processor execution time, in the case of proces-

sors. and block communication transfer time (bit rate), in the case of busses.

Subtasks req;uiring the same processor type may place different demands on that pro-

cessor and incur different execution costs. In the signal processing application realm, the

amount of data that a subtask requires may be the indicator of the execution cost difference

between two subtasks that require the same processor. For example, the cost of a vector add

operation may be considered linearly dependent on the size of the operand vectors. These

relationships get more complicated with the type of operation and the implementation of the

processing primitive.

There may be processing primitives in a configuration that are capable of performing

an identical operation but have different operating characteristics due to different physical

implementations. For example, a SIMD processor array implementation of a two dimen-

sional FFT operation has a processing complexity of order Iog2 1f for an M-point FFT

whereas a serial implementation (single processor) has a complexity of order M 2 log 2M. An

ALPS architecture which contains special purpose FFT primitives as well as general purpose

serial computing nodes (e.g. DSP boards with software libraries) will be able to handle FF1

tasks with varying execution costs; a particular FFT subtask will incur a cost determined by

the actual processor which receives that subtask. In this case the task definition can not

encode the execution costs for methodologies which model d-ALPS because the cost will

depend on (and vary with) the binding of a subtask to a resource, decided upon at runtime.
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3.4.2. Communications Capacity

Communications in the d-ALPS architecture is supported by multiple, parallel data

husses. Access to these busses is controlled by a token-passing scheme in which a node

vhich currentlv -owns" the token is able to reserve space on data channels to set up and

e\ecute a small number of data block transfers. Aggregate communications capacity can be

simplistically viewed as the number of data busses times the width of each bus times the

clock rate. lcnorine all overhead and inefficiencies, the aggregate capacity can not be less

than the aggzregate demand that the task graph presents to the system. This aggregate

demand can be computed in a manner similar to that used to compute processing demand;

this will be reviewed in chapter 5. Unfortunately, demand for communications is bursty,

meaning that aggregate demand will give only a lower bound on demand. In addition,

demand will typically be buffered due to the restricted number of data channels; even though

data channels may be fast, their limited number forces serialization points in the execution of

an algorithm. Determining the number of communications channels should, under the most

benign conditions, depend on the aggregate demand for data transfers; however, the degree

of parallel demand and the performance degradation of the system when this demand is seri-

alized might influence a configurer to change this allocation.

3.4.3. Memory

In d-ALPS, physical memory limits on processing resources bound the number of out-

put data blocks that a node may queue up. Under this physical limitation, bounds may be

placed on the number and composition of queued data blocks. By imposing dynamic limita-

tiors on the size and composition of queues so as to minimize the disparities in queue sizes,

servicing rates across distributed queues can be equalized. Limitations that are placed for

this reason may or may not be blind to the particular data blocks that are located on each

I
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queue. as the overall service discipline is cqually unbiased. The actual queue ceiling should

be considered an architectural parameter but the mechanism employed to service these-

queues is a task mapping parameter.

3.5. Task Mapping Specification

The setting of gr:aph detailing paraneters, described under task definition parameters,

represents methods of detailing the original directed task graph so that while it is a function-

ally equivalent graph, its mapping is more precisely, statically specified. The task mapping

parameters describe how the architecture executes the nonstatically ordered portions of the

task. These parameters define relationships among concurrently executing tasks (different

arrivals) as well as relationships between concurrently executing subtasks of the same arrival

which are competing for processing and communication resources.

Some of the above graph detailing parameters, as inputs to a configuration architecture,

would impose an ordering or partially static control above the baseline precedence relation-

ships of the original signal flow graph. For example, static link ordering on all links in the

graph would determine the scheduling order within each task although it would not neces-

sarily dictate inter-task-arrival scheduling. If some, but not all, of the task scheduling is not

predetermined, then the system will dynamically determine the remaining options. This is

one way to view the current scheduling decision hierarchy. There is a general relationship

among tasks and a nominal ordering of task execution (priority and nonpriority links and

possible graph detailing) above that. The rest of the scheduling decisions are made by the

system and as long as the system doesn't deadlock by excluding critical ordering options, the

tasks will be processed "correctly."

The function of subtask servicing then is to fill in the gaps between (1) the order (static

partial schedule) imposed by the directed flow graph and detailing parameters applied on top
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of this garaph and (2) a random, unbiased choosing of when and where subtasks that are not

related by any restrictions in (1) are assigned.

3.5.1. Data Queueing

In the general ALPS approach, subtasks waiting for assignment to a physical resource

I I1 be queued until a suitable resource is found. This queueing can be done at a number of

logical locations. Subtasks can be queued at the site of the previously executed task: data

blocks sit on ourput queues. Alternatively, data blocks can be transferred to a node that will

eventually execute the pending subtask. Subtasks are then held on input queues. Finally,

data blocks can be transferred to an intermediate holding buffer which then seeks to dispatch

these pending tasks. This is logically similar to output queues but it has different

ramifications on queue servicing and overhead. The choice of where and how to store data

blocks (subtasks) pending execution depends on the architectural support for queueing-in

d-ALPS there are output queues and no input queues, and currently no specification for

intermediate queues-and the queue servicing mechanisms which are the kemal functions of

task mapping.

3.5.2. Queue Servicing

In a correctly functioning d-ALPS system, data blocks will queue up at the sites that

they were processed until the associated interface control unit can present a requests for bids

for that data block and a bid is received. The assumption is made that a directed task graph

has been provided which does not provide a complete set of intra- and inter-task relation-

ships. That is, a node which has several data blocks to service does not have an accom-

panying servicing list. Servicing decision types can be classified as either graph dependent

or graph independent. The specification of a heuristic involves deciding how servicing deci-

sions are to be made and then encoding local weighting or servicing rules.

I
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Graph index:ndent servicing disciplines make no connection between specific data

blocks and their association with particular subtasks and task arrivals. Servicing mechanisms "

in this category can base decisions on general fairness principles; examples are equal servic-

ing rates, age. LIFO, or FIFO.

Graph dependent servicing disciplines can make use of static information about locally

resident subtasks to assign priorities or preferred orderings. Mechanisms which fall into this

caiteorv might assign some relative preference based on the global age of a subtask (e.g. its

arrival frame number) or on the number or type of subtasks that must wait a subtask to com-

plete. This latter mechanism is called a &)wnstream cost servicing policy. The d-ALPS

specification has a single mapping mechanism and is based on a graph independent FIFO

discipline, though it is not strictly FIFO. The configurer operating with the d-ALPS archi-

tecture underlying the configuration would not be able to choose alternate servicing mechan-

isms. The architect is interested in investigating these mechanisms; d-ALPS mechanism is

by no means the final word on task distribution for ALPS.

3.5.3. Priority Bidding

It may be desirable to assign subtasks for which a gradient of processor performances

exists to faster processors. This is particularly true if the configuration architecture contains

special-purpose primitives for some but not all subtasks processing types. A general purpose

resource (such as a DSP primitive which can perform a multitude of functions) may be com-

paratively fast in executing some subtasks and comparatively slow in executing others for

which special-purposes devices are allocated. The specification of priority bidding involves

encoding a partial mapping preference of specific subtasks to particular processor perfor-

mance classes. The d-ALPS architecture provides a subtask-indepndent mechanism for

prioritizing utilization of processors of higher performance.
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3.6. Conclusion

The axwe parameters require isolated and joint investigation. Isolated investigation of

task definition parameters is afforded by static analysis methods, which assist the architect or

contimrer in determining basic task requirements and choosing graph detailing parameters.

Simulation approaches integrate the task definition into investigation of architecture and

mapping parameters. Architectural parameters are studied in isolation by a careful reading

and ana~lsis of the particular architecture specification. Individual components can be proto-

typed or modeled; they can be supplied with random requirements so as to avoid biasing the

investigation by a particular set of task definition and mapping parameters. The underlying

architecture can be simulated or emulated. These are joint investigation methodologies that

require task definition and mapping parameters to function. Task mapping parameters can

be studied bv schedule simulation, a high-level tool for investigating task distribution heuris-

tics indcrndent of an underlying architecture. This simulation requires task definition

parameters and configuration architecture parameters, such as resource pool composition.

Particular implementable task mapping mechanisms can be studied by architectural simula-

tion. This methodology incorporates mapping, task definition and architectural parameters

that are salient to the level of detail of the simulation. The remaining chapters introduce and

describe the static analysis, schedule simulation and architectural simulation methodologies.



CHAPTER 4

Problem Setup

T,.,: chapter will introduce four methodologies for studying allocation and scheduling

problems for d-ALPS architectures. The development of these methodologies was motivated

by the limited usefulness of detailed architectural simulation to address a range of study

objectives. These objectives included gathering basic information about the underlying task

set. characterizing the complexity of scheduling and allocation problems, examining some

performance tradeoffs of particular scheduling approaches, and verifying in detail a particular

approach. In the sections below, a discussion will be given of how the alternative metho-

dologies evolved from perceived and identified shortcomings of the detailed architectural

simulation, the fourth methodology. Next, a review of each of these methodologies will be

presented. These reviews will serve as a preface to the remaining portions of this thesis.

The scope and structure of the remaining chapters is to examine and evaluate alternative

problem representations, explain why and how those representations or models are useful,

describe the analysis and conclusions drawn from these methods and discuss further applica-

bility of the approach.

The four methodologies are static problem analysis, state/schedule generation, schedul-

ing simulation, and detailed architectural simulation. Static problem analysis refers to

analysis techniques which extract basic information about the demands that a specified task

and arrival rate poses on an application system. The objective of this group of techniques is

to characterize the task set so that basic resource requirements can be discerned and alterna-

tive ordcrings of tasks can be enumerated and compared. State generation encompasses

methods of representing a simplified, deterministic version of the task and the architecture.
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Tll task-architecture conjunction is viewed with a finite state machine representation. Find-

inc and enumerating schedules can be viewed as a problem similar to state generation and •

c%,:Ic detection. There are techniques of deriving the states of this FSM; however, they are

computationally expensive. By demonstrating these techniqucs the difficulty of generating

e% cn simple, static schedules can be established. Schedule simulation is a method of com-

paring task mapping and allocation heuristics. Its objective is to provide an inexpensive way

o! .inal% zvine the underly ing task set in a highly instrumentable environment and determining

%h.t tyevs of allocation and scheduling strategies may work better than others. Detailed

architectiral simulation provides a performance view of the actual processing of a task on a

contiguration architecture. The objectives are to evaluate the performance of a chosen allo-

cation aLL. scheduling strategy on a target architecture and to decide whether that

configuration meets performance criteria. Simulation can be used to determine allocation

and tradeoffs bv iteratively simulating with different initial parameters; this is a fairly costly

approach but may be well worth it when considering an application configuration.

A straightforward approach to studying allocation and scheduling problems within the

context of an ALPS-like architectural approach is to choose a set of example problems,

simulate the behavior of a given architecture that implements each problem, and derive con-

clusions or observations about the system, task mapping and task detailing parameters. Con-

sider the following example. Figure 4-1 shows an application graph and table 4-1 gives

corresponding information about data transfers between subtasks. Table 4-2 gives informa-

tion about the execution architecture. By submitting this algorithm and architectural descrip-

tion to an architectural timing simulator, various performance results can be generated.

These results reflect the capability of the allocation and the underlying scheduling mechan-

isms of the configuration architecture. It is important to keep in mind that the configuration

architecture is comprised ol individual nodes and busses that are described an architectural
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Algorithm (task) Information"
Subtask Processor Type Transmit Block Size

_ _ _(k bytes)

d I Source 2

Source 2
",os Magnitude 2

\ 'ector add) 2

Iso2  Vector(subtract) 2
d e,, Sink NA

Table 4-1: Task information for simulation example.

specification. One pertormance metric of this architecture is the utilization of processing

resources. the perceniase of time that processors are executing. A simulation of the architec-

ture can provide this utilization information. Figure 4-2 shows processor utilization for the

architecture as it executes the algorithm in figure 4-1. Note that processors spent most of

their (aggregate) time sitting idle. Two other metrics are the throughput and later of the

system. The throughput is the rate at which tasks are processed by the system, and the

Architecture Information

Resource Tvpe Execution Time (usec) Quantity
Source 2000 (interarrival time) 2
Vector [add] 800 [subtract] 1500 4
Magnitude 1200 3
Sink 0 1
Bus [16 bits@10 MHz] 50 per 1K block 2

Table 4-2: Architecture information for simulation example.

I
I
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Fi2ure 4-I: An example task graph and architecture.

latency is the time it takes to process those tasks. Figure 4-3 demonstrates that, after the

"pipe" tills up, tasks are being processed at a rate of about I every 2000 microseconds.

This rate is comparable to the interarrival timc of tasks: the system is keeping up with the

specified arrival rate. The latency of the system is 2800 microseconds and is fairly constant.

As a result of the above simulation, we might want to reduce the pool size of various

resource types and investigate the results. This may yield a more efficient (and inexpensive)

implementation that maintains a desired level of performance. A new, reduced allocation is

shown in table 4-3. Performance metrics for this allocation are shown in figures 4-4 and 4-

5. Notice thit the processor utilization is much higher (there are less processors for the
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Figures 4-2 and 4-3: Processor utilization and system
latency for the example task graph and architecture in

figure 4-1.I
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Architecture Infonnation
Resource Tv Execution Time (Isec) Quantitvy_

Source 2(XX) * 2
Vector [add] 800 [subtract] 1500 2
Mlagnitude 1200 3
Sink ) 1
Bus r16 bits( 10 N111/I 50 per IK block 1II

Table 4-3: Modified architecture information
for simulation example.

percent calculation). The latency is slightly larger (2871 psec), but the system is still able to

.iccomodte the specified throughtput.

.linv of the parameters described in the previous chapter could be varied to develop

relationships among them. This approach, straightforward as it may sound, is problematic.

Results derived from this detailed simulation and analysis on "real-world" example prob-

Ics arc subject to numerous extraneous considerations: What is the effect of the underlying

support architecture? What are the effects or influence of memory requirements or limita-

tions? What are the scheduling mechanisms employed by the architecture? Moreover, gle-

aning extensible information and observations about scheduling and allocation parameters

from specific problem examples hinges on the necessity of finding useful benchmark prob-

lems. In the above example, the results provided are applicable only to that specific algo-

rithm and architecture. This algorithm can not be considered to represent a class of applica-

tions and therefore may say little to nothing about allocation or scheduling approaches to

related problems.

Following is a review the kinds of information that architectural simulation provides,

and the view of the system that it assumes. From the user's point of view, an architectural
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Figures 4-4 and 4-5: Processor utilization and system
latency for the task graph in figure 4-1 and the

architecture information in table 4-3.
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simulator casts the effects of var'ing systcm parameters into performance measures for

,,%hich the simulator was instrumentcd.1 In the above example, the performance measures that

the dCtailkd architectural simulator supported included latency, throughput and utilization of

processors, busses, and memory. Th,_se measures were computed over a limited number of

domains. Addinm more instrumentation to a simulator is often a difficult enterprise, but

more im-ortantly, from a methodology point of view, presupposes to some extent knowledge

o the objctive of the simulation. The simulator builder must be conscious of the metrics

thut will be intcresting to both an engineer performing an ALPS configuration study- a

co o.'fcnrIr- a.d,1 an eng-incer studying basic allocation and scheduling problems and design-

ins an underlying support architecture such as d-ALPS-an architect. A detailed system

simulation. as implemented. provides a configurer with performance view of the system. A

simulatio-n system hich caters to an architect should provide "tools for tinkering around."

What thiS means is that scheduling and allocation investigation can be supported by separate

but intcgratable utilities that perform some specific analysis chores and include different

assumptions of the underlying architecture.

The methodologies that will be presented attempt to fill in the knowledge gaps by pro-

viding investigation tools to the architect. The objectives of the modeling methodology then

arc reconciled with the varying scopes of the investigation. In exchange for excluding many

of the operational details of a particular architectural specification, altemative representations

and system models provide some additional insight into underlying scheduling and allocation

problems. Once a representation proves fruitful, it can be refined and retrenched so that it

more closely characterizes the underlying architecture.

i is also possible to create a simulator that provides an execution trace of the system that it is simulating.

This type of inforration .s probiemaiuc because it is often uo difficult to filter out useless information.
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Detailed
Task, Mapping,
and Architecture
Parameters

, ; WO/ e U~ti

, ,

Figure 4-6: A representation of the methodology information
hierarchy.

The alternate approaches chosen were developed by deciding upon the objectives of the

methodology and then deciding how to fulfill these objectives. The first approach, static

analysis, fills the objective of learning about the baseline demands that a task set and arrival

will place on a hypothetical system and whether a "reasonable" system can be configured.

This provides pre-mapping information, whereas detailed simulation provides information

about a particular architectural mapping. The second approach, state enumeration and gen-

eration, gives a measure of how difficult it would be to investigate a particular scheduling

strategy and provides an example framework for generating these strategies. This provides a

complexity comparison and a comparison to a methodology suitable to a hypothetical archi-

tecture with scaled down timing considerations. The third approach, schedule and allocation
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simulation provides a useful set of tools to evaluate different scheduling heuristics and to try

different graph ordering and priority assignments. This allows the user to change some -

underlying architectural assumptions that a simulator would not provide, and provides a

low%-cost way of generating these alternatives where a simulator would require high-cost

Inodi fiCation.

The four modeling methodologies do not make identical assumptions about the under-

kii-g scheduling problems and then perform different types of analysis. Instead, the four

fDetai ed
Task, Mapping,
and Architecture
Parameters

Static Architectural
Analysis Smlto

Figure 4-7: An alternative representation of
the methodology information hierarchy.
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methods make use of different types of information and require differing levels of detail

about the underling architecture. Two approaches to representing the information hierarchy

are shown in figures 4-6 and 4-7. The former approach provides a supcr-set of information

about the possible descriptions of the task set and architecture, but part of this information

lies in altematives that are never enumerated or never considered. A more realistic view

then is shown in the representation of figure 4-7, in which overlapping subsets of informa-

tion are e\tracted and supplied to the methodologies. Table 4-4 provides a summary of the

t>xivs of iformation abokut the task/architecture that is provided to each of the modeling

methods. Note that the static analysis method is architecture-independent, whereas architec-

tural simulation requires a lull description of the architecture which includes detailed imple-

mcntaition information that would be useless to other analysis methods.

Following is a review of each of the four modeling methodologies that have been

introuced. In each section below, a methodology is summarized, its objectives are

revi., ,ed and a brief evaluation is given. These sections serve as a reader's guide to the

rem. nder of this thesis.

Architectural Information Required by Model
Static Analysis none
State Generation resource composition, queue servicing heuristic

Schedule Simulation resource composition and addressing,
queue servicing hcuristic(s),
graph mapping alternatives

Architectural Simulation complete architectural specification,
fully defined mapping specification and
implementation

Table 4-4: Architecture information provided to each model.
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4.1. Static Analysis

A directed flow graph provides an algorithmic representation of a problem in terms of

computation subtasks and communications and precedences among those subtasks. The

mapping of this graph onto a distributed architecture-in which each algorithmic node is

mapped onto an architectural node-produces two classes of allocations. The first class is

on .e in Ahich there are ample resources to process this task set on a demand basis. That is,

,L;tasks wail only on the completion of other subtasks with which they are involved in a

precedence relationship and do not have to wait on processors or resources once they are

ready to execute. The demand graph can be modified to account for all architectural and

timing necessities except a lack of resources.Z An example of an acceptable modification is

the re-ordering of a some of the processing and communication subtasks to accomodate pro-

cessing and communication by a target architecture. The incorporation of demand graph

modification allows the class description to encompass a large class of static solutions. This

demand processing environment can take many forms. In a static form, resources are allo-

cated and connected in a temporally-equivalent manner, i.e. there are either private proces-

sors and data channels or reserved time/space on existing channels for each subtLsk. In a

dynamic form, ample resources accomodate the demands of the task set and while

time/space is not reserved, there is enough surplus processing/communicating power to exe-

cute the graph direcly. The basic characteristic of this class, regardless of its implementa-

tion form, is that task execution follows the demand described by the directed flow graph

and a schedule can be directly inferred from the (possibly modified) graph. An allocation

which facilitates this demand execution will be referred to as a class one allocation.

2 These architecture allowances may not include systematic qucucing to make up for lack of resources un-

less that queueing were explicitly built into the original application graph.

I
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In the second execution class, the task definition poses proccssing requirements on the

system, but an implementation schedule can not be inferred from this definition. The system -

processes tasks according to its own scheduling and assignment rules. This schedule may be

generated statically or d. namically. General purpose computing systems fall into this broad

categorv as they have scheduling policies and resource availabilities which are defined

independently of a particular task graph.

The reason thec two classes have been defined is as follows. When evaluating the

directed flow graph, profiles of processor and communication resource demands can be

made. Architectures of the first class require the minimal system resource allocation that

accomodates peaks in the demands of the task description. Architectures of the second class

require system resource allocations that must, as a minimum requirement, provide resources

to accomodate average demands of the task description.3 This allocation will be referred to

as a 'class two" allocation. The difference in the two classes, then, is whether allocation

and scheduling decisions must accomodate peak or average resource demands.

The "static analysis" modeling methodology is used to expand a task definition graph

to include some assumptions about the underlying architectural specification and protocol

(provided in appendix A). This is done in order to develop rough estimates of the peak and

average allocation requirements. The steps in deriving this expansion are as follows. A

standard representation for processor and communication resource requirements and pre-

ccdences is created, including explicit representation of communication tasks. The ordering

and binding of processors is then taken into account by serializing the order in which com-

munication tasks leave common sources and merge to common destinations. A steady

demand period is derived by computing the latency of the graph and then overlaying

From a statistical print of 'o.ck, if a fixed servicing rate equals an average demand rate, the system is
hound to hottlcnCik. The e'rvic:ng rate must be greater than the expected demand rate.



67

3 ~ :4

C C5 C64
.3

(a) :

.wtual
source

:0 c2

:C I c2

Figures P-()ad48b:AI xmpeapiaingahad
~in anexpnsin f tat rap t reresnt n xectio orer



relresentations by a dclined interanival time. The computations are performed by linear

programnming techniques.

A simple exampIc of this technique is as follows. Consider the application graph in

tiure 4-8(a and the subtask timings provided in tables 4-5 and 4-6.4 The graph can be

e'\panded to represent one of many possible execution order. This expansion is shown in

ti!ure 4-8b). Notice that the precedences of figure 4-8(a) have been preserved, but

4-5: Processing Subtask Information
Subtask Processor Type Execution Lime

(generic units)

pO Source 8
pI Source 8
p2 A 8
p3 B 4
p4  C 5
p5 Sink 0
p6 Sink 0

4-6: Communication Subtask Information

Subtask Communication time
(generic units)

cO 2
cl 3
c2 5
c3 2
c4 4
c5 8
c6 6

Tables 4-5 and 4-6: Processing and communication
subtask information corresponding to task graph

in figure 4-8(b).

"Tbc innings provided for the source, reprcscnt the interarrival Lime of tasks.



adIitional ones have been added to serializc communication broadcasts and mergings. The

lItency of the resulting graph is thirty time units and can be computed via linear program- -

min, methods b' considering it as a maximum path problem.

The demand profiles generated by this technique as an intermediate result represent the

demands for processors and communication resources that are imposed by the underlying

ta,,k description in the absence of restrictions imposed by configuration allocations or over-

heAd costs. but in the presence of communication serialization and binding. If a

conieu ration architecture Ahich falls roughly into the first execution class is desired, i.e. an

execution schedule is implied in the task description, allocations at or above the peaks in

these demand profiles are required. All other allocations will create a system which falls

into the second class. Assume that the inter-arrival time of tasks in the above example is

ei:ht units. A set of demand profiles for the steady state system is provided in figures 9(a)

through 9(d). Notice that both class one and class two processor allocations can be accomo-

dated by providing one of each resource type. The peak demand is one processor and the

average is less than one. Of course, depending on the inefficiencies of the execution

environment, one processor may, in fact, not be sufficient. In figure 4-9(d) the demand

profile for communication resources is provided. This application is communication inten-

sive. A raw ratio of communication to processing lime is 1.75. In order to provide a class

one allocation, at least five communication channels are required (assuming no

inefficiencies). In order to provide a class two allocation, at least four communication chan-

nels are required. Chapter 5 will describe the application of static analysis in terms of an

example and will evaluate its applicability.
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Demand Profile for Processor "A"

-
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Demand Profile for Processor "B"
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Figures 4-9(a) and 4-9(b): Demand profiles for
processor types A and B
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Demand Profile for Processor "C"
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Demand Profile for Communication
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Figures 4-9(c) and 4-9(d): Demand profiles for
processor type C and communications resources.
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4.2. State. Control Strategy Generation

.\ second metrhodolo.,y for studying scheduling alternatives involves the generation of

states M hich represent the mapping of the task graph onto an architecture. A control strategy

is a deteministic, cyclic schedule of task (or subtask) initiations and communication events.

It cm be used to either impose a schedule on a system or describe a system operating in a

stetdv state. That is. if a system has a complete description of a nonvarying task set, a

deterministi, proccdure for mapping those tasks, and a fixed task arrival rate, then the sys-

tern %ill e\hibit a pcriodic behavior. Given a simplified model of the task set and the under-

I\ ire svstem, it should be possible to generate schedules which demonstrate this periodicity

in a manner similar to the control strategy generation for processor pipelines.6 The substan-

tial difference between pipeline scheduling and this method is that the processor pipeline

case is one in ,hich a stratceg is developed to determine a mapping, whereas in the

enumeration methodologv a strategv is determined to describe a mapping. A control stra-

tegy for processor pipelines is implemented as a hard-wired schedule, whereas this mapping

description falls out of the scheduling and control mechanisms of the underlying architecture.

The applicability of the schedule enumeration approach to the configurer is limited

because of its computational complexity and the number of assumptions about the underlying

architecture that must be made. The direct utility of this method to the comparison of

configuration architectures is fairly limited due to the number of states that must be included

in order to develop a reasonably detailed model. The applicability of the methodology to the

ar,:hitect lies in the comparison of the complexity of the class one and class two scheduling

domains. The methodology provides a demonstration of the mapping complexities of the d-

The aboe assumptions are ton simplistic if tasks take longer to execute than ..cheduled or if there is any
irvanability mn demand on the system or in resources available to the system.

6 The cor.ol strategy discussed here is the general one, presented in chapter X, in which latency schedules

and delay inseruons are the degrees of freedom in determining an opt-amal schedule or one that meets avplication
d'rmands
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ALPS architectural approach by applying a modeling methodology that is widely used in

simpler architectural domains to a domain which has additional scheduling and allocation

dimensions. The size of the problem into perspective by providing a relationship between

the complexity of scheduling and mapping and the complexity of graph path analysis prob-

lems. T-he approach is a valid academic exercise in that it demonstrates the scale of the

problen- and validates the investigation of heuristic-based alternatives for ALPS scheduling

and allocation. Chapter 6 will provide a detailed description of this state generation tech-

nique and will discuss its relation to graph analysis techniques.

4.3. High Level Scheduling Simulation

A third approach to studying task serviling and scheduling alternatives is schedule

simulation. The approach was motivated by the desire to model scheduling events at a

macro-event level-as opposed to performance metric level-while automating the modeling

process so that large-grain architecture parameters could be accounted for and studied. A

simulator was --veloped which provides a method for examining scheduling and allocation

alternatives. The parameters to this simulator include the task graph, the allocation of a

configuration architecture (or a method of iteratively generating these architectures), and the

subtask ordering methodology employed by this system .

The simulator takes a demand-versus-supply view of scheduling and allocation prob-

lem. The application architecture is modeled as a task demand server, at each stage a

demand is presented to the system, represented by the activation of new subtasks, the ongo-

ing execution of subtasks, and the arrival of new tasks. Some of these demands can be put

off (queued) and some must be served immediately. The simulator then acts to fill demand,

assigning as many subtasks as allowed by the allocation. When the demand outweighs the

7 No assumption is made as to the feasibility of the described ordering methodology. Some methodologies

may not have feasible implementations in a distributed, dynamic assignment architecture because of the magni-
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supply, the simulator turns to a heuristic-based delay server which ranks the importance of

pending subtaks according to one of a suite of heuristics. This ranking makes use of either

centralizcd or distributed information about tasks and determines which tasks must wait and

,,hich can proceed. Allocation alternatives are considered in the context of scheduling

heuristics by iteratively applying the simulator to systems of different allocations: the simula-

tor keeps track of the types of delays that are induced by nongenerous allocations. The

experimenter is then provided wxith a view of these ordering tradeoffs as wel as resulting

performance measures.

From a LOIfigurer's point of view, this level of simulation can used to determine an

initial allocation and scheduling structure for a particular application. Since timing informa-

tion particular to an architectural specification (such as bidding time) is not incorporated, cer-

tain allocations will be useless, from a configurer's point of view, if they are based on a

peculianty of task timing synchronizations that are explicated by this simulator. On the

other hand. comparisons of scheduling heuristics will be applicable (i.e. scale up to more

accurate" simulators) because the scoring and heuristic delaying functions are not precise,

and will model imprecision in timing synchronizations in a final system. Furthermore, varia-

bilities in timings, such as execution time distributions, can be added to this level of simula-

tion.8 From an architect's point of view, this level of simulation can provide useful com-

parison information about general scheduling and allocation approaches. Chapter 7 will

describe this type of simulation in detail and will illustrate its effectiveness by cmsidering

several examples.

tude of control information transfer.

A general model of a software module considers :t as requiring a random number of incructior., each
taking a random time. By extensicn to the central limit theorem, the computation time would teid to a baussian
distribution lDuu)q 2 l.
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4.4. Architectural Simulation

A fourth method of' analysis is the extraction of information about the performance of

particular tasks on fully specified architectures. A simulator which models the timings of a

parti,ular architecture was developed. The simulator models the appearance of new tasks on

ph. sical sources at fixed intervals and the subsequent assigning of subtasks via a distributed

and dynamic bidding scheme. The simulator provides aii environment in which an algo-

ri:L,' : and an architecture can be specified and the performance of the architecture can be

viewed bv choosing from a set of performance metrics and domains, or categories, over

vhich those metrics are computed. 10 The simulation environment provides verification and

performance comparison of a subset of the task, system and mapping parameters presented

in chapter 3.

A basic comparison between architectural simulation and a scheduling simulation is

that an architectural simulator trades detail and accuracy in the representation of a specific

architecture for degrees of freedom in parameters to vary. Some of the mapping parameters

are realized in the architectural specification. These include queue servicing disciplines and

link ordering choices. In order to vary these parameters to an architectural simulator, an

implementation approach must be designed and verified, and a simulator built to model that

approach. For example, if a priority queue servicing discipline is to be investigated via

detailed simulation, it would be necessary to first determine modifications to the architectural

specification that would implement that discipline. A second (and costly) necessity would be

the design or modification of a simulator to accomodate that new specification. Chapter 8

will describe a simulator which models the performance of an initial ALPS architecture

which roughly corresponds to the architecture described in appendix A.

9 An algorithm refers to a signal processing algorithm, described by a directed flow graph. The term task
set is used in this thesis to generalize the applicability of the architecture to other domains.

1 A description of a prototype configurer's simulation environment is presented in [Mano87].
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Static Analysis

Static analysis of a task refers to analysis of that task independent of particular alloca-

Lini or scheduling disciplines to derive some basic information about the task. A directed

task graph representation provides, on inspection, interconnection information about the

graph. By some fairly straightforward computation, the representation can also provide tim-

ing information. This timing information can be used to derive rough estimates of processor

and communication resource requirements. These estimates can then be used to determine

Ahether it is conceivable to configure an ALPS architecture that provides an on-demand pro-

cessine environment, as opposed to one which requires queueing to buffer the demand for

resources. Static analysis includes enumerating the graph detailing parameters described in

chapter 3. Through this enumeration and subseqent application of some simple techniques,

relationships between specific graph orderings, resource requirements and latencies can be

derived.

5.1. Overview of Methods and Objectives

Following is an overview of the methods and objectives of static analysis. The task

representation is refined and a method of generating these refinements is given. The objec-

tive here is to impart a uniformity to representation. The expanded directed graph represen-

tation provides a view of the most concurrent mapping of a task onto an architecture. Limi-

tations imposed by the underlying architecture are included so that concurrency represented

in the graph matches concurrency that is conceivable in the architecture. Those limitations

that affect this most-concurrent representation are built into the representation. Once a

representation for a particular ordering is obtained, static analysis allows the manipulation of
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Figure 5-I: An example directed task graph.

graph detailing parameters so that lower bounds on latency can be determined. Likewise,

upper bounds on the concurrency of task execution can be found by experimenting with

these parameters. Finally, a profile of resource demands that a task imposes in a class one

allocation environment can be found. This profile can be determined for an individual task,

and can be considered a composite measure of task concurrency. The profile can also be

found for a system in which tasks arrive at a constant rate. It will be shown that in an

environment in which there is no queueing of subtasks, the resource demand profiles that are

generated for a period equal to the task interarrival time are steady profiles. That is, the

demands arc periodic, and this period can be found easily. These periodic profiles represent

the ''resource scheduling" of an idealized system in which all timing is statically deter-

mined, resources are always available, and decision-making time is zero.I

If the dcisicn-making times were known and constant, they could be easily included in the model. This
i,, still an idc lic id case.
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5.2. Graph Transformations

Consider the directed task graph in figure 5-1. Nodes v, and V2 represent sources, or

task initiation sites. From a task processing point of view, those sources perform some

operations and then allow their successor nodes (V3 and v,) to commence processing. The

directed links c. and c, indicate these successors. When both v 3 and v4 are finished, nod(s

v, and v, can commence. These nodes are sinks, and their completion represent the comple-

tion of the task. From a processor ncrork point of view, nodes v, and v 2 represent inter-

faces to the net\kork from the outside world. They are hardwired physical devices that

receive data, perform Nome operations on some of that data, and then find successor proces-

sors to act as the successor nodes in the directed graph. The directed links c1 , c 2 and c3

indicate the connections between subtasks and imply a communicaton of information

required for execution. In a uniprocessor or tightly coupled environment, this information

processing

Scommunication
Yc2 

]c6 
btask

Figure 5-2: A task graph which explicitly represents
communication subtasks.
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,nay be a signal or a pointer. In a loosely coupled environment, such as the architecture

supported by the specification in Appendix A, this information may include signals, code,

and data. The links can be weighted with the cost of this communication subtask in much

the same way that nodes can be weighted with the cost of processing. A simple transforma-

tion of the task graph which explicitly represents communication subtasks is shown in figure

5-2. The links between subtasks of this graph represent precedence relationships and have

no weight assigned to them. 2

A representation convenience is to use nodes that lack some of these attributes to aid in

connecting "resource-based" ncxes. These nodes, called null nodes lack resource type and

execution cost attributes. An intermediate transformation can be made to a graph which iso-

lates subtasks. This isolation is shown in figure 5-3: the dark shaded nodes are null nodes

which precede and succeed each processor or communication subtask. This isolation will

aid in rep ;senting the permutations that will be made on the graph.

Once the task graph has been transformed to explicitly represent and isolate communi-

cation and processing tasks, the graph can be modified to represent a set of execution orders

that are supportable on an underlying architecture. If a network of processors could be built

that could accept the problem graph in the form shown in (fig. 5-3), then this next step

would not be necessary. If considerations must be made to accomodate capabilities of indi-

vidual nodes to transmit and receive information, and to accomodate interconnection limita-

tions, then this step is necessary. Herein lies a semantic problem. The architecture we are

discussing is an underlying approach which is, in its ideal, application and configuration

independent. The graph modification should, at this stage, accomodate the specification limi-

tations and not the limitations of a particular configuration architecture. One way of viewing

2 Thus far. the nodes in these graphs have the following attributes: weight, or execution time; resource type

required; and the number of links which merge to and emanate from the node.
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Figure 5-3: A task graph transformation with isolated subtasks.

and follo.,ng this distinction is to model the limitations of individual nodes in the network

first and later model in limitations that "reasonable" configurations would impose. For

example, it would be acceptable to model in a limitation that nodes can only transmit one

data stream at a time, but it would not be acceptable to, at this stage, model in a bound on

the number of resources that can exist. These global limitations will not be ignored, but will

be viewed as part of an allocation problem, not a representation problem.
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As an example, we will consider a set of limitations that are imposed if the underlying

support architecture described by the specification in appendix A is chosen. 3 The architec-

tural limitations stem from the receiving and transmitting capabilities of nodes. It is

assumed that all processing nodes can broadcast data and receive broadcasts. Nodes can

transmit a single stream of data to multiple destinations but can only receive one stream of

data at a time. Further architectural assumptions will be played out at a higher level, but at

this level it is important to consider that a data transfer takes place uninterrupted; transfers

are not multiplexed onto the channel. Likewise, the particular ALPS architecture described

in Appendix A predicates that subtasks demand uninterrupted time on resources that are

capable of acting as the attributed type. Given these restrictions, the directed graph, as it

stands, is ambiguous with respect to the ordering of transmissions into and out of nodes. A

further ambiguity is the representations of groups of links as ports. While the communica-

tions •!t of nodes appear to be distinct, some of the communications may be transfers to

multiple receivers. A grouping of these receivers into a transfer port signifies that a single

communication event is initiates multiple nodes.

A first step in resolving these ambiguities is to note the degrees of freedom. A node

with many communication ports emanating from it can send those ports in any order. Some

of these ports may contain a single link and some may contain multiple links; the ports with

multiple links can be sent repeatedly, as long as all links are eventually sent. This means

that new communications events can be spawned b5 removing links from ports. Each node

which has N ports with one link in each port contributes to N! permutations on the task set.

Each port with M elements contributes, via multiple sends, a large number of possible per-

mutations on the task set: A group with 2 links contributes 3 possible sending orders; A

The point to be made here is that this stage in modeling is not a convenient quick fix to support the ex-
amplc underlying architectural specification. Rather, the underlying architecture is a convenient example to
demonstrate the graph transformations.
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group with 3 links contributes 13 possible sending orders; A group with 4 links contributes

55 possible sending orders.

The degrees of freedom on the receiving side are as follows. A node with many input

ports merging to it can receive these links in any order. There is always one link per input

Ixrt. Each port with N merging elements contributes N! permutations on the task set.

Keeping in mind that each of these contributing permutations multiplies the total ordering -

possiblities, it may be impractical to enumerate all sending and receiving orders for large

task sets. Complicating matters is that, as will be shown later, some of the orderings are not

feasible because they introduce deadlocks in the execution order. That is, they require A

before B and B before A. If one of those static orderings was applied to a system, i.e. if

an%- underlying architecture is required to process links in that fixed order then it would

block on servicing subtasks in the graph. These deadlocks, fortunately, are easy to detect.

5.2.1. Resolving Send and Receive Orders

Following is a procedure for incorporating the sending and receiving link orderings

into the directed graph representation. A task graph can initially be labeled arbitrarily.

Transfer ports that encompass several links are shown by encircling the tails of those links.

Representations which include the architectural limitation of sending data a single block at a

time can be derived by serializing multiple links leaving from a single node. Assume that

the communications subtasks are ordered co .... cN and communication co will occur first

(fig. 5-4(a)). The tail of the link leading out of co is removed reattached to the null node

that precedes the communication event c1. The !ail of link leading out of c I is then removed

and reattached to the null node that precedes the communication event c2. And so on (fig.

5-4(b)). Representations which include the architectural limitation of receiving data a single

block at a time can be derived via a similar serialization. Assume that the merging corn-
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(a)

(b)

Figures 5-4(a) and 5-4(b): A subtask with four emanating
communications subtasks and the serialization of those subtasks.

munication subtasks are ordered co .... cv and communication co will be received first (fig.

5-5(a)). The head of the link leaving co is removed from the null node that precedes the

destination (vo) and is attached to the null node that precedes cI. Likewise, the head of the

link leaving cl is attached to the null node preceding c2. This procedure is repeated for

nodes c 3 ... c.v l Link c,%, is not disturbed (fig. 5-5(b)).

The following example will make use of these serializing methods to illustrate some

link enumeration :nd ordering concepts. Consider the task subset in figure 5-6(a). This
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Figures 5-5(a) and 5-5(b): A subtask that is merged to
by four communications subtasks and the serialization

of those subtasks.

subset will be called a subgraph because it represents a subset of a task graph. In this

example, there may be subtasks that precede v, and V2 and there may be subtasks that

succeed v3 and v4. Figure 5-6(b) shows an expansion of the task subgraph which clearly

idcrtifics the communication subtasks. Note that v, initiates two distinct communicition

subtasks each with a single destination but v2 initiates the single communication subtask c,

which has two destinations. This latter communication subtask represents a broadcast to

multiple nodes, and as mentioned earlier, the broadcast can occur once to service all reci-
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Figures 5-6(a) and 5-6(b): A task subgraph and
corresponding expansion.

pients, or multiple times to service groups of recipients. Figures 5-7(a) and 7(b) illustrate

the transformation of the task subset to accomodate the limitation in the underlying

specification that a node can only engage in one communication at a time. This transforma-

tion is done by enumerating the possible orderings of communication subtasks and then

adding precedene links to reflect each order. The ordering choices "c , before c2" or "c 2

before c," represent two possible permutations on the task subgraph. In figures 5-7(a) and

5-7(b) the communication subtask c, is shown as representing a simultaneous broadcast to v3

and v4. This subtask can be replicated to represent the optional servicing orders of the reci-

pients of the broadcast. Figures 5-7(a) through 5-7(f) enumerate all of the possible sending

orders in the subgraph. Notice that figures 5-7(a), 5-7(c) and 5-7(e) represent the same ord-

ering of c: and c2 but enumerate the alternative orderings of c3; since there are three possi-

ble orderings of c3 there are six sending permutations on the subgraph. Notice that in

figures 5-7(c) through 5-7(0) the communicanon c3 is sent twice. Since the subtask is

repeated, an additional node ,:'3 is added to the task graph.
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Figures 5-7(a) through 5-7(f): A subgraph with different
communication subtask orderings.
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Once the sending permutations have been established, the receiving permutations can

be enumerated. For the task subgraph in figure 5-6(b), there are four receiving permutations. -

These can each interact with the six sending permutations so that for this small subgraph,

there are 24 possible orderings. Before the receiving orderings are derived, the subgraph is

redrawn to isolate each of the subtasks by a null node. This allows precedences to be

changed more easily and facilitates the comparison of subgraphs with different precedence

orderings. The receiving orderings impose a precedence on the communication subtasks that

merge to a particular node. Figures 5-8(a) through 5-8(d) show the four receiving permuta-

tions applied to the sending orderings of figure 5-7(a) . Notice that in all of these figures, cl

precedes c2, as it does in figure 5-7(a), but the communications into v3 are ordered so that

communications subtask cl < ci. Likewise, in figure 5-8(a) the communications into v4 are

ordered so that c2 < c3. The representation is logical, with respect to the ordering of com-

munication tasks, but the destination of communication subtasks are no longer derivable by

inspection. This is because the notation from which this graph originated used directed links

to represent the communication subtask and the precedence of that task, with the implicit

understanding that the successor subtask was the destination. In figure 5-8(a), for example,

the subtask of cl has multiple immediate destinations, none of which are v3, the processing

subtask to which it communicates data. The destinations must be given in the communica-

tion subtask attribute lists.

5.2.2. Deadlock Detection

Once the receiving orderings have been enumerated, the transformed subgraphs can be

used to extract information about the combination of the sending and receiving orderings. In

particular, the presence of deadlocks can be detected by graph cycle detection methods.

'The remaining 20 permutations are not shown.

The operator "<" indicates a precedence relationship: a < b indicates that a precedes b.
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Figures 5-8(a) through 5-8(d): Four receiving permutations
applied to the sending ordering of 5-7(a).
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Consider figure 5-8(a). The precedence list can be created: v V2 < cI < c2 < C3 < V3 = V4,

where the symbol = indicates an equivalent precedence. In figure 5-8(c) there is a deadlock:

,:3 precedes c3. This can be seen by tracing the graph from cI to c2 and then to c3 which

then loops back to c 1. An explanation of the above deadlock is as follows. The broadcast c3

is used as the first communication to v3, but is also used as the second communication to c4.

A precedence list would show that c3 < cI in order to initiate v 3, and c2 < c3 in order to ini-

tiate v. This transitively implies that c 2 < cl, and that can not be the case because the origi-

nal sending order imposed the restriction that cl < c 2.

An inspection of the deadlocked subgraph in figure 5-8(c) shows that a cycle has been

created. Deadlocks caused by a particular choice of sending and receiving orderings can be

detected by looking for cycles in the transformed subgraph. This fulfills one of the objec-

tives of static analysis: enumerate the link orderings and, along the way, eliminate those

which are not plausible. The methodology is fairly straightforward, as graph cycle detection

algorithms are well known and can be applied directly to a transformed graph.6 The graphs

themselves will not be large; graph ordering transformations increase the number of nodes in

the task graph by about a factor of four, depending on the number of communication links

and the grouping of those links.

There may be a large number of ordering permutations for each graph. Inspecting for

cycles in each graph is easy and generating each graph is simple and quick. Generating all

of the graphs may take a long time, but this up-front deadlock analysis can be set up and run

overnight. In the context of a larger objective, it is important to remember that the link ord-

ering information can be critical to making scheduling scheduling decisions. Task graphs

which have only a small number of feasible orderings or which require that broadcasts to

multiple receivers be broken up to prevent deadlocks may impose unintuitive resource

6 An example is a topological sorting algorithm presented in [Knut68].
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Figure 5-9: A nonconflicting subtask order which
reduces communication time to 2 units.

requirements. Moreover they may fail on certain static priority lists or do poorly when the

deadlock problems conflict with subtask ordering heuristics. For example, in the above task

subgraph, it may be desirable maximize the concurrency of communication by ordering sub-

tasks so that cl and/or c2 can occur at the same time as c 3. If the communication time of

the three communication subtasks is equal, say 1 time unit for each communication, there

may be a particular sending order which allows all three tasks to proceed in two time units.

Because of architectural considerations, it can be shown that this is only possible if c3 is sent

twice; if the bandwidth is available, this may be desirable. By enumerating all of the sub-

task orders, some nonconflicting orderings may be found that reduce the communication time
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to 2 units. Figure 5-9 illustrates such an ordering. This ordering uses the sending priorities

of figure 5-8(c) combined with the the receiving priorities of figure 5-8(b). This result is-

unituitive-sending something twice which need only be sent once actually reduces the

overall latency-and demonstrates the utility of static analysis.

5.2.3. Latency Determination

Given a graph that has been fully ordered, the latency can determined. The latency of

an ordered graph is a measure of the longest execution path through the graph. Finding the

latency of a particular graph is an end in itself and a means to other ends. Graphs with

different subtask orderings can be compared to find ones which minimize the latency. The

above goal may be modified by subjecting extraneous constraints such as allocation con-

straints. As a means to other ends, the latency is needed to compute the resource utilization

of a graph that is executing in a class one allocation environment. An intuitive explanation

of this is as follows. It is desirable to study the behavior of a pipeline once the pipeline

"fills up." The longest execution path latency indicates, in part, when the pipe has filled up.

Extracting the latency of a directed task graph is a straightforward procedure that relies

on the definition of a starting and ending point from which to compute path lengths through

the graph. In the general case there will be many sources and sinks in the graph. This

makes it a bit difficult to define latency: where is a task initiated and where does it complete

execution? The assumption has been made that all sources will produce initiations at the

same rate. With a single source graph, that source can be thought of as initiating the entire

task set at a fixed rate. This results in the highest-precedence subtasks being executed.

With a multiple sources graph, each source initiates a subset of the highest-precedence sub-

tasks. As a representation convenience, multiple sources can be considered to stem from a

single virtual source which distributes the initiation responsibility to these multiple sources.
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The represcntation works if there is a logical one-to-one relationship between initiations on

each of the sources. A similar technique can be applied to sinks. Multiple sinks which

share a one-to-one firing can be joined to a virtual sink which represents the completion of

all execution streams in the task. The streams do not have to complete at the same time for

this representation to work; the virtual sink will be "activated" when the last sink is

finished.

The latency calculation relies on this virtual-source-to-virtual-sink definition. For a

given graph there may be a number of paths from the virtual source to the virtual sink.

Given a class one execution allocation in which this graph directly defines an execution

schedule, and assuming that all of the processing and communication times are known, the

graph latency is simply the time it takes for the longest path to complete and will correspond

directly to the execution latency. If the allocation is class two, this latency will be the

minimum execution latency. That is, a class two execution environment must still obey the

execution order of the task graph and can not decrease the latency of of the longest path.

A simple method of calculating the latency is to enumerate all of the paths from virtual

source to sink and then add up the execution costs along each path. This method may or

may not be impractical, depending on the rigorousness of the analysis. If the architect is

going to go through the trouble of enumerating each possible graph permutation, then com-

puting distances along each path in each specific graph is not a lot of additional work.

However, since the number of paths in a particular subgraph pales in comparison to the

number of graph permutations that are possible given the number of communications subtask

orderinas in the original graph, it is useful to limit the amount of computation that must be

performed on each graph.

A linear programming technique was developed to efficiently compute graph latency.

It treats the directed graph as a maximum cost critical path problem. Each directed edge is



-93 -

described by its source, destination and weight. The simplex method is used by setting up a

simplex tableau in a edge-oriented approach. For each edge, a "+1" is placed in the con-

straint row corresponding to the node from which the edge emanates and a "-I" is placed

in the constraint row corresponding to the destination node. Since each column corresponds

to a unique branch, it will contain exactly one "+1" (source) and one "-I" (destination).

The sum of all of the constraints will be zero, implying that the rows are linearly dependent.

This means that one constraint row can be eliminated: the virtual sink node is neglected. An

initial basic variable for each constraint can be chosen on inspection as the column in which

the first "+1" occurs. Each constraint row will have a "+1" since every node has an

emanating edge (the virtual sink is eliminated). Each column has only one "+1" so the

basic variables are distinct. A description of the simplex method can be found in [Hsia82].

The simplex method can then be applied over this tableau and will yield a solution which

gives the cost along the critical path.

This method is useful not only for finding critical source-to-sink paths but for finding

intermediate node distances. A simple technique of adding large value links can be used to

trick the simplex method into finding distances between an arbitrary origin-destination pair.

All other path options are eliminated by inserting large value links between the origin and

the virtual sink and then the destination and the virtual sink. The path that will be chosen as

maximum will be one which encompasses these two nodes. The path length can then be

extracted. This techniqiue will also detect if there is no path between the origin and destina-

tion.

An alternative method of finding critical paths is a straightforward, recursive, depth-

first search technique to enumerate the paths through the graph and the subsequent length

computation on each path. This technique is useful for small graphs but may become

unwieldy for larger graphs, and may be difficult to apply to arbitrary paths within the graph.
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Figure 5-10: The task subgraph of 5-6(a) with attached
source and sink and its expansion to explicitly

represent communications subtasks.

An advantage is that the paths, as well as the lengths, can be extracted.

5.3. Example Analysis

Consider the task graph in figure 5-10. Notice that it is comprised of the task sub-

graph in figure 5-6(a) with a source attached to it. Subtask execution times can be assigned

to each processing and communications subtask (table 5-1). Using the linear programming

technique described above, the latency for the task graph (assuming a class one execution

environment) can be found. This is done by first choosing the sending and receiving link

orders and then converting that expanded graph into a simplex tableau. Note that a source

has been attached to these subgraphs and that nodes v 3 and v 4 are sinks. Table 5-2 gives the

task latencies that correspond to the link orderings of figures 5-8(a) to 5-8(d) and figure 5-9,

which is a most-concurrent ordering. The latency for the most-concurrent case is not the
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minimal. This is a result of the particulars of the timing information supplied to this exam-

ple. If all communication and execution subtasks took equally long to process then this -

would have been he minimal latency ordering.

The latency of a graph can be a useful calculation when considering a particular set of

orderings or a single initiation of the graph. For a system with periodic task arrivals,

though, latency is only one characteristic of the task set. The task arrivals combine to yield

a demand for resources that is based on the demand imposed by a single task. This demand

can be found from an ordered task graph whose latency has been determined. Determining

the baseline resource demands imposed by a particular task is a reasonable objective of static

analysis. This objective can be met by refining the task description to incorporates the

periodic arrival of tasks and then using this description and the task latency to derive the

demands for resources. The peaks and averages in these (processor and communication)

resource demand profiles can then be used to generate minimal allocations needed for class

one or class two execution environments.

Algorithm (task) Information

Subtask Subtask Type Execution Time
Iusec)

Vo Source 0

v1 A 1100
V2  B 1000
V3 Sink 0
V4  Sink 0
c Comm 100
c I Comm 50
C 2 Comm 30
C 3 Comm 25

Table 5-1: Task information for latency calculation example
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A task with a periodic arrival rate can be rcpresentcd by chaining individual task

graphs (figure 5-11 .k here a delay inserted between each graph gives the inter-arrival time. - -

This representation is made easier if the graph has been transformed into one which has a

virtual source.

A profile of demands for each resource can be generated by first creating that profile

for a single task set and then overlaying the profile onto itself. If the profile is examined

afler the first latency, a periodic demand can 1- detected, the period being the interarrival

time. The proof of this is fairly simple. The demand profile of a single task can be con-

sidered as a discrete function d[n 1, which is valued in the range n = 0 to n = N (the latency

is N). Assume that the interarrival time of the task is A, and A is a multiple of N, so that

A = V. If the function is replicated onto itself at n = A, n = 2A ... then a new function

_ [n] can be described:

g[n] = d[n] + d[n-A ] + d[n-2a] +

At (or after) n = N, this function is periodic in A:

(1) g[.V~r] = d[N-r] + d[N+r-A] + d[N+r-2a] +...... + d[N+r-mA]
(2) g[,V+r+A =[dV+r+A] + d[N+r] + d[N+r-A] +...... + d[N+r -mA]

Latency Information
Link Ordering Latency

(figure) (Wec)

5-8(a) 1305
5-8(b) 1305
5-8(c) Deadlock
5-8(d) 1205

5-9 1280

Table 5-2: Latency information for latency calculation example
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(3) g[,V ±r-2A I = d[N+r+Z.4 + d[N-+r -A -t d[N-.-r I -- d[.V+r -A]+ + d[.V-+r-nmA

These expressions are equivalent for any r because d [n]I is zcro for n > N. Pictorially this

periodicity can bek shown by overlapping random scqucnccs. In figure 5-12(a), a random

sequence is shown which is valued from n = 0 to n =20. This sequence, d[n]I is added to

the sequence din-71, dfn-141J.d[n-49]. The resulting sequence is plotted in figure 5-

12 (b). Note that the sequence is periodic after an initial pipe filling. Since the partial

Sequences d in -561, d [n-m* 71 are missing, the sequence tails off. This observation has been

Figure 5-11: The task graph of 5-10 with a delay
inserted between each arrival of that task.
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integrated into a program which derives the latency of the task and, given an interarrival

time of tasks, determines the demand for communication and processing resources. As an - -

example, consider the example task graph shown in figure 5-13(a) and the associated task

information provided in table 5-3. The generation of the steady state period will be demon-

strated for two different link ordcrings. In the first ordering, the broadcast communication co

will occur once and will have 12 simultaneous recipients. The subsequent communications

c through c 1 2 will occur serially to accomodate reception by the sink. In the second order-

in,, the broadcast c. will be repeated for each recipient: it will occur 12 times. The merging

communications will be serialized as above. Figure 5-13(b) shows the task graph expanded

to show the serialized merging. A demand graph for processors and communication

resources is shown in figures 5-14(a) and 5-14(b). This represents resource utilization for a

single firing of the task. Demand profiles which corresponds to this task graph and an

Algorithm (task) Information
Subtask Subtask Tvpe Execution Time Subtask Subtask Type Execution Time
Vo Source 0 Co Comm 100
V A 400 c Comm 100
V, A 400 c2 Comm 100
V3 A 400 C3 Comm 100
V.4 A 400 C4 Comm 100
V5 A 400 cS Comm 100
V6 A 400 C6 Comm 100
v7 A 400 C7 Comm 100
v A 400 c Comm 100
v9 A 400 c9 Comm 100
V:o A 400 C Comm 100
v11  A 400 C Comm 100
V12 A 400 C12 Comm 100
v:3 Sink 0 c __ Comm 100

Table 5-3: Subtask information for demand profile
generation example.
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interarrival time of 600 units are shown in figures 5-14(c) and 5-14(d). Note that the single

broadcast to 12 processors of type A means that there is an instantaneous demand for these

12 processors: the peak demand is 12 while the average demand is about 8. The peak com-

munications demand, though, is fairly low and is near the average demand. How can this

graph be modified to reduce these peak demands? One option is to stagger the demand for

processors by initiating only one processor execution at a time. Figure 5-13(c) shows a

transformation of the demand graph in which the broadcast is repeated for each processing

node. The single-firing demand profiles for this arrangement are shown in figures 5-15(a)

and 5-15(b) and the steady state demand, once the pipe has filled up, is shown in figures 5-

15(c) and 5-15(d). The peak demand for processors is now equal to the average demand (8)

but the consequence is that additional communications resources must be utilized to repeat

the broadcasts.
7

5.4. Conclusion

This example provided several insights into the utility of these techniques, as well as

the limitations. The demand profiles will yield the minimal allocation of resources under

any execution environment. This can be used as a baseline for allocations. The comparison

of peak versus average demand give an indication of the extent of buffering that will be

required in a class two execution environment. Finally, the effects of graph enumeration

parameters can be explored in terms of the change in the synchronization of resource

demands. If a task graph with large variations in resource demands can be converted into

one with fairly stable demands, a class one execution environment may be feasible. Further-

more, systematic queueing is reduced.

7 An alternate solution is to insert delays so that the processor demand profile remains the same but the
communications demand is reduced. This technique, akin to the delay insertion method used for pipeline proces-
sor scheduling, will be explored later.
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The main limitation of this analysis technique is that it is very difficult to incorporate

allocation and detailed architectural information into the model. The techniques that have

been described become difficult to implement when the number of graph variables grow. In

addition, the essential technique is based on manipulations of the task, not the architecture.

A "supply-side" view is hard to obtain and integrate; coercing the task graph to fit a

specified allocation is possible but the resulting transformation is not periodic. If the prob-

lem is not periodic, or if its period can not be easily determined, simple task replication

techniques can not apply.

This method, then, is limited in its ability to take architectural assumptions into account

because of the growing dimensions of the problem. Furthermore, static analysis of the task

graph is limited by the underlying representation and periodicity constraints in its extensibil-

itv to general allocation problems.



CHAPTER 6

State Generation

Suppose that a given task has all of its timing requirements specified. How can that

task be mapped onto a set of resources? As we saw in the previous chapter, some estima-

tion of the number of resources required-both processors and communication channels-

can be made by looking at the peaks and average of the the resource demand profiles. If an

allocation was made which met the peaks in the demand profiles then the task graph could

be considered an execution schedule for that allocation and a direct mapping could be made.

There would be no buffering of subtasks and the latency of the graph would equal the

latency of the implemented system. Nothing was said about the ability of that system to

execute the task if an allocation was made that was at or above the average resource

demands in the graph. It was implied that the system would have to queue up tasks to

flatten the peaks of the demand graph, and some systematic methods of effecting that flatten-

ing were investigated. These involved changing the demand graph to find a subtask ordering

which had flatter profiles. If none of those ordering attempts reached a suitable solution then

queuing techniques which buffer tasks to accomodate contention for resources would have to

be employed. The allocation would then create a class two execution environment in which

subtask queueing occurs.

This chapter contains an investigation of the process of mapping subtasks in a class

two allocation environment. An example is given which shows a state representation of the

execution of a task (or series of task arrivals) onto a set of processors. That example is

expanded to show the complexities of the mapping representation when delays are intro-

duced to flatten the demand profile. The example will illustrate state diagrams that were

- 107-
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derived manually. Once the reader has been introduced to the difficulties of generating state

diagrams that represent the states of the mapping process in a class-two environment, the-

process of finding and evaluating delay lists will be introduced.

A state diagram representation is chosen to describe subtask mapping in a class two

environment. State generation provides a means of representing the mapping in a class two

environment and gives a sense of how subtask delaying approaches work. Furthermore, it

illustrates the complexity of both the problem representation and the subsequent search for

delay approaches. The number of states which are required to describe the assigning of sub-

tasks in a class one environment is very large, but state representation of mapping in this

environment is not necessary because by definition, the directed graph accurately describes

the scheduling of those tasks- the state representation is trivial. The number of states which

:re required to describe the assigning of subtasks in a class two environment is even larger.

The significance of this is that the size of the representation reflects the difficulty of manipu-

lating and extracting information from the state diagrams. Consequently, it is difficult to

find a particular subtask delaying approach which meets a specified set of allocation, perfor-

mance, and mapping criteria.

By choosing a state diagram representation, individual subtask mappings can be not

only enumerated, but alternate mappings can be generated. A procedure which automatically

generates subtask mapping state diagrams will be described. This procedure can enumerate

all of the delaying alternatives and generate a field of schedules. That field can then be

explored by looking for cycles in the state diagram; these indicate execution schedules in

much the same way that cycles in pipeline latency sequences indicate plausible control stra-

tegies. Theoretically, an schedule which meets performance criteria (latency and stability)

could be chosen from this field. The problem is that the approach fails on extensibility.

This automated technique does not scale to problems with large task graphs, large
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allocations, and line timing granularities. And even if it could, it would not be extensible to

problems which are less completely defined and which include more assumptions about the -

underlying architecture. It will be shown that the number of states that need to be evaluated

is explosive and grows along many dimensions. Some of these dimensions are critical, such

as the number and composition of resources that are being allocated, and some of the dimen-

sions are arbitrary, such as the execution time of subtasks. Because of this state explosion,

the technique is more demonstrative than it is applicable. In that sense, this chapter sets up

a paper tigcr and then slays it. The purpose in doing this is that explaining the infeasibility

of solution-by-enumeration techniques justifies heuristic-based solutions and simulation-based

analysis methodologies.

6.1. State Diagram Representf',on

The process of state diagram representation and generation will be explained via a sim-

ple example. Figure 6-1 shows a directed task graph. The "source," graph node v, is also

the first subtask. we'll call this subtask A. It executes and then initiates communications

subtask c,, which is a broadcast to subtasks v, and v3. They are initiated and eventually

v3

Y Y

c2 03

v4

x

Figure 6-1: A directed task graph.
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send information, via subtasks c, and c 3, to subtask v,; we'll call v, subtask B. The task

graph can be broken into separate graphs for each , ,cessor type (fig. 6-2). This decoupling -

\, ill aid in reducing the number of extraneous variables in the representaiton. Unfortunately,

as will be demonstrated later, the different-typed subtasks are related via graph precedences

so that changes to one graph affect all other graphs. Consider the task graph for processor

type X (flg. 6-2(a)). There is an arrival of tasks every two time units and for each arrival a

demand for processors for three units followed by five units of delay in which subtasks of

other types are executing and subsequently a derrand for three more units of processing.

This demand graph can be redrawn in a directed task graph form (fig. 6-3(a)) or in a gantt

chart form (fig. 6-3(b)). The ganitt chart shows the demand for processors in terms of lines

proponional in length to the demand timing that they represent. Notice that the demand

graph has a repetitive segment whose length is proportional to the interarrival time. Each

column represents a new arrival and the arrivals are staggered by two time units (each row

represents a time unit) to show the interarrival time of tasks. The peak and average

demands for processors can be viewed by scanning across rows of the task graph and count-

ing entries in each row. In this example, the peak demand is for 4 processors but the aver-

age demand is 3. This becomes more evident in a demand profile for this resource (fig. 6-

4). If we wanted to map this demand graph onto an architecture with four processors of

type X-a class one allocation-we could do so by assigning awaiting subtasks onto await-

ing processors in a round-robin fashion. A state diagram which represents this assignment is

shown in figure 6-5. The individual processors have seven states, described in table 6-1.

Since there are four processors and seven states, there are 47 possible states of the system.'

However, since this allocation is class one, the system will reach a periodicity at or after the

latency of the task--the l1th time unit-and the steady initiation period will be the

' For this simple example, if there are p processors and s states per processor, the number of global states
is Sp
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Figure 6-2: Partial task graphs for subtasks processor
types X and Y and communication subtasks.
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Figures 6-3(a) and 6-3(b): Directed task graph and gantt chart
notation for the partial directed task graph of 6-2(a).
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State Description

0 Not processing
a, Processing first third of subtask A
a2 Processing second third of subtask A

a3 Processing last third of subtask A
b, Processing first third of subtask B
b2  Processing second third of subtask B
b 3  Processing last third of subtask B

Table 6-1: Description of states for example task graph.

intcrarrival time. Not all 47 states will be visited. In figure 6-5, the first state (state 0)

represents all processors idle. State 1 represents the assignment of subtask A onto processor

1. State 11 represents processor I completing subtask B, processor 2 starting subtask B, pro-

cessor 3 completing subtask A and processor 4 starting subtask A. This is the last state in

Demand for Type "X" Processors (steady state)

5

E 4

3

*Denan
2-

0-
0 1 2 3 4 5 6 7 8 9 101112131415

Time (units)

Figure 6-4: A demand profile for the partial task graph in 6-2(a).
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the first initiation of the task. Every two states subsequent show an identical initiation of

subtasks, i.e. state 11 contains the same subtask segments as state 13 and state 12 contains

the same segments as state 14. While the location of these segments-which processor

(represented by the column position) they happen to be initiated on-varies, the initiations

are the same. A cycle which repetitively generates these segments will be called an "initia-

tion cycle." The salient system state is then the list of subtask segments, as opposed to an

ordered list. A "mapping cycle" represents the same segments being operated on by the

same processors. For this cycle, the the column-location of the subtask segments must be

preserved-the system state is then represented by an ordered list of subtask segments.

State 14, is the beginning of such a cycle: the segment list is: a 2, 0, b2, 0. The cycle runs to

state number state0li 0 00
1 a0 0 0 02 al 0 0 0 Execution States

a2 0 0 0
3 a3 al 0 0= al
4 0 a2 0 0_;2

5 0 a3 al 0 3
6 0 0 a2 0
7 0 0 a3 al 0
8 0 0 0 a2
9 bl 0 al a3
10 b2 0 a2 0

initiation i-l111 b3 bI a3 al b3sequence t.-121 0 b2 0 a2
13 al b3 bl a3

14 a2 0 b2 0
mapping 1 a3 bI b3 al
sequence 16 0 b2 0 a2

171 al b3 bl a3

Figure 6-5: A state diagram representation of the round-robin
assignment of the demand graph of 6-2(a) onto a collection of

four type X processors.
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state 17; state 18 will be identical to state 14. This type of cycle represents the subtask map-

ping from a processor point of view in that the states represent what each processors hap-

pens to be doing at each stage as well as what subtasks are being processed. The period of

the mapping cycle is longer than the initiation cycle period because the interarrival time is

shorter than the longest execution time of one of the subtasks. It would not be possible to

represent the continuous execution of subtasks which require 3 time units on a unique pro-

cessor in the space of a period of 2 time units. The period of the mapping cycle for a

class-one allocation, then, is at least as long as the longest subtask time and is a multiple of

the interarrival time.

This task graph could be mapped onto a system of three processors if we can find a

way of buffering the peak in demand in such a way that the peak is reduced to the allocated

number of processors. Since, in this example, the average demand is three, the peak demand

will be reduced to three. Since we are not reducing overall demand, the valley in demand

must be increased to three. The buffering is performed in the following manner. At each

time unit, subtasks that have already been assigned continue to execute. The number of new

subtasks that need assigning is compared to the number of available resources. If there is a

conflict then the buffering procedure that is being uniformly applied is used to choose the

subtasks to buffer. It turns out that for this example there are several plausible procedures to

ouffer new tasks; two of them will be illustrated. The first is shown in figure 6-6(a). In this

procedure, a conflict arises at the lIth timestep. Subtask B of arrival 1 and subtask A of

arrival 5 are awaiting initiation but there are two subtasks already being executed. The

conflict is resolved by delaying the later arriving subtask. This rule is continually applied

whenever there is a conflict. Note that when a subtask is delayed, its successors are also

delayed. In this example, this means that if subtask A is delayed by one time unit then sub-

task B must also be delayed. Note that while the resulting gantt chart has a periodicity to it,

I
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Figure 6-6(a): A gantt chart representation of the subtask
scheduling under the first buffering procedure.

the initiation cycle period is no longer equal to the interarrival time. After the pipe filled.

there was a conflict for resources and new arrivals were queued. The queueing was no

longer needed after four arrivals, but demand resynchronized four arrivals hence. The

interaction between new and old tasks both competing for a common pool of resources. If

we examine a state diagram of this mapping we can see that additional states are needed to

model the queueing of a subtask at a particular processor. The simplest representation

would require 36 states. Each processor can be processing a subtask (4 possible states) or



- 117-

could have a subtask awaiting execution. The description of the queueing can be limited to

two states-either a subtask is waiting in a queue or it isn't. In general, though, a complete

description of the qucucing would require more specificity: what subtasks are waiting and

how long have they been waiting?

An alternate way of effecting the delaying is to delay subtask B whenever a conflict

arises (figure 6-6(b)). The gantt chart for this technique shows that its periodicity is much

smaller, though the tasks are always delayed by one unit. What is interesting about this

delaying is that it neatly solves the problem of clipping the peak demand while creating no

downstream conflicts. An inspection of the gantt chart reveals that the subtask executions

have a steady pattern with a periodicity equal to the interarrival time. This pattern is the ini-

tiation cycle (fig. 6-6(c)). Notice that this pattern can be shifted by 1 arrival every two time

units and the entire gantt chart in figure 6-6(b) can be generated. The interpretation of this

can be seen if each of the six components in the sequence are explained. The task can be

divided into 6 execution segments-one for each time unit of execution of the task which

has had the subtask B delayed by one unit. The initiation sequence is comprised of these 6

segments spread over 6 task arrivals. That is, at each step, three of these segments for three

of six arrivals is "processed." Because of the judicious use of delays, half of these seg-

ments are non-executing segments so the subtasks can be cleanly mapped onto three proces-

sors. The actual mapping state diagram takes longer than two time units because the assign-

ing of subtasks to processors is performed in such a way as to prevent subtasks from having

to "jump around" from processor to processor. As with the class one allocation case (four

processors allocated), the state diagram cycles at some multiple of the length of the longest

subtask and task interarrival time.

This example has demonstrated a few important points. With a gantt chart representa-

tion, we can identify a cycle of task initiators which corresponds to the portions of subtasks
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Figure 6-6(b): A gantt chart representation of the subtask
scheduling under an alternate buffering procedure.

which require execution at each time unit. These initiators have a periodicity which is equal

to the interarrival time for class one allocation environments but their periodicity is distorted

in the presence of delays. In addition, their periodicity is a fraction of the periodicity of the

mapping state diagram because this diagram encompasses the assignment of those subtask

portions. The mapping period is longer because it must demonstrate that subtasks are fully

executed on single processors. If the underlying architecture provided cost-free subtask

preemption and migration (something not very commonplace), then some subtask A could

begin execution on processor PI, move over to processor P2, and finish up on processor P3.

At the same time, a second subtask B could begin execution on processor P2, move over to

processor P3, and finish up on processor p,. In this case, an assigment could be performed
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Figure 6-6(c): A state diagram of the mapping of subtasks
to particular processors, demonstrating an initiation

and a mapping cycle.

in the space of the initiation sequence and the mapping and initiation periods would be

identical. Finally, while subtask delaying is necessary to flatten peaks in demand, it is not

always possible to find delaying techniques which do so without imposing a cost on system

performance. In this example, two approaches were shown. The first increased latency by

one time unit for half of the tasks and the second always increased latency by one time unit.

The first had a more complex initiation sequence associated with it and therefore required a
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larger number of states to minimally represent the mapping of subtasks onto processors.

The first delaying approach resulted in tasks being processed with a lower average latency

but was less stable and possibly harder to implement because of the nonconstant application

of delays. The second delaying approach--always delay subtask B-might be easier to

implement but resulted in a higher average latency.

6.2. State Generation

The previous example demonstrated how a state-diagram notation could be used to

describe the initiation and mapping cycles. The initiation cycle was a repetitive sequence of

subtask initiations which described when particular subtasks were initiated and, implicitly,

when they were delayed. The mapping cycle encompassed the initiation cycle but also

showed wthere those subtasks were processed, i.e. it encompassed both task and processor

states. It was shown that the period of the mapping cycle was dependent on the period of

the initiation cycle, the interarrival time, and the time of the longest subtask.

The state diagram notation is useful not only for describing these cycles, but generating

them as well. Consider the task graph in figure 6-2(a) and its gantt chart representation. In

the previous example, two different delaying rules were used to generate the resulting map-

pings of the task set onto a class two allocation, The first rule could be summarized as:

"delay new arrivals whenever there is a conflict." The second rule could be summarized as:

"delay subtask B whenever there is a conflict." From a procedural point of view, in both of

them, an allocation was decided upon and a delaying rule was chosen. As explained in the

example, there are an infinity of delaying procedures that can be applied, some are based on

regularly applied heuristics and some based on specific delay lists. Delay rules based on

heuristics could read: "delay all new tasks whenever there is a conflict" or, more generally,

"whenever there is a conflict, delay the nth subtask belonging to arrival which is m arrivals
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old." These procedures generate repetitive delay lists. Specific delay lists are lists of sub-

tasks to delay at particular times or situations and may not follow a particular pattern. One

of these lists could read: "Delay subtask A/arrival I at time x; delay subtask B/arrival m at

time y; delay subtask C/arrival n at time z." These arbitrary delay lists are as viable as

heuristic-based delay rules in that they address the same problem of holding over peaks in

demand to allow a class two allocation but they are harder to investigate and may be harder

to implement Despite the forsecable implementation difficulties, the existence of these

specific delay lists is noted because the domain of delay sequence candidates must be

broadened to include any arbitrary, workable sequence.

The problem of finding delay sequences is, then, expanded. We must now consider

any arbitrary sequence that fulfills the objective of buffering demand. A procedure for

suboptimally choosing a delay sequence would be to consider a couple of heuristic-based

sequences (because they are easy to generate and evaluate) and then choose the one which

best meets certain performance objectives. This procedure yields suboptimal solutions

because (a) the choices are being made from a subset of the possibilties and (b) there is no

way to show that the optimal solution always resides in that subset. A procedure for

optimally finding a suitable sequence could be: enumerate all of the delay-ordering possibili-

ties and then select the sequence that best fits the performance objectives. "Optimal," in

this sense, implies making the best choice from the entire domain of possibilities. A few

questions then arise. For the general problem of mapping a predetermined task set of known

arrivals, is it possible to optimally select a delaying scheme? If so, what is the usefulness of

the optimal sequences? And how do we relate optimal solutions formed over one resource

type to a possibly conflicting optimal solution formed over another resource type? The

remainder of this chapter investigates these questions by outlining and then discussing a pro-

cedure for enumerating the possible delay lists.
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Assume that, as in the example task graph in figure 6-2(a), the task timing and alloca-

tion have been fully specified. The mapping of tasks onto processors can be performed in a

step-by-step manner. When a mapping conflict occurs--when the instantaneous demand for

resources is greater than the instantaneous supply-instead of applying a particular delaying

rule, all alternatives arc explored. This creates of branches in the state diagram. Each of

these branches is independently investigated. Along each branch, when a conflict arises, it is

handled by generating all possible subtask delay alternatives which push back the conflict

(ig. 6-7). When some state X is generated, the paths leading back from X to the root of the

state diagram are investigated to see if the state has already been generated. If it does, the

path leading to X is terminated by connecting the states prior to the newly generated state X

to the previously generated state X. This forms a loop in the state diagram. This represents

a cycle in the state diagram from which a repeating sequence of delays can be extracted.

as
a2 0

0 a3 al

0 0 a2
al 0 a3
a2 0 0
a3 al b1

4..-0 a2 b2
al a3 a3 bi a3 b3
a2 bl 0
a3 b2 bl

-- to al b3 b2 -

_ - .it3a 2 a I W3 a2 bl ba

al b3 a bi b3 a2

W a2 bi b3 a2 al

bl a3 a2
b2 bl a3 b2 al a3
b3 b2 ai

a? W3 a2b3 a2 bi
al a3 b2

Figure 6-7: A schedule generation by state enumeration
along each branch.



123 -

Each path in the state diagram will eventually terminate by looping backward. It will no

longer be neccessary to generate states after a loop because the subsequent states will be

equivalent to those up the tree. Once the state diagram has been generated, a delay sequence

can be chosen. In a manner akin to control strategy generation, delay sequences can be sim-

pie or complicated. Simple sequences involve paths through the graph that, in one cycle,

visit each state in the cycle only once. There are a finite number of these simple sequences.

Complex sequences involve paths that revisit states; there are an infinite number of these

schedules. That is, if there is no limit on the length of the period of the sequence, then the

period can be infinite. If there is an imposed limit on the periodicity of the sequence then the

sequences can all be enumerated.

The problem of enumerating delay sequences has been demonstrasted in terms of

finding all possible cycles in a mapping state diagram. Applying this technique is implausi-

ble because of the complexity of the underlying state description and the size of the resulting

cycle detection and evaluation problem.

The complexity of the state diagrams rests on the following parameters The number of

states of each subtask is equal to the execution time of the subtask divided by whatever the

smallest time increment is. An additional state for a subtasks is "not processing." If there

are Af subtasks with a serialized execution time of N, then there will be N + M states of

execution for each processor. The allocation will yield the number of processors that can

occupy one of these states. If there are P processors then there are p+A processing states

Delays introduce extra states in two ways. First, if a subtask is delayed by U units, then

there are U additional states to that particular subtask. If there is no ceiling on the amount

that a subtask can be delayed, then there will be no ceiling on the number of states to

describe the status of the subtask. One would think that a reasonable ceiling would be the

execution time of that paticular subtask. That is, if a subtask takes twice as long to execute
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as its stated execution time, then the delaying approach responsible for this situation is

flawed. Unfortunately, this overlooks some of the key synchronization issues of the task

graph mapping. If a subtask is to be fired after a merging of links from short and long

paths, the subtask must be systematically delayed during the difference in these paths. This

delay is a property of the task specification and not the allocation. Additional delays can be

attributed to ,he delaying approach. To create a delay ceiling that is meaningful, then, two

approaches can be used. The first is to set all ceilings to a large number, such as the antici-

pated latency of the entire task. In this case, if a delaying approach results in a particular

subtask being delayed for a rediculously long period of time, that delay approach will be

rejected. The problem with this ceiling is that it may not reject all approaches that should be

rejected. The second ceiling could be created by factoring out the path differences leading

to subtasks and then assigning subtask delay ceilings that are based on some standard delay

allowance plus some additional allowance to subtasks which do not lie along the critical exe-

cution path of the graph. The delay ceiling imposed on the subtask adds to the number of

possible states of that subtask. A final complication is that each processor may be currently

executing a subtask, so it may be in one of N + M execution states but the queued subtasks

must somehow be accounted for. The actual location of these subtasks is dependent on the

underlying architecture. If we make a simple assumption that all of the queued subtasks are

held in some bin, then the composition of that bin must be described. Complicating matters

is that any number of task arrivals may be in the system. If the number of arrivals in the

system is A and the sum of all of the allowed delays is D, then A * D states are required to

represent all of the delayed subtasks. To more completely describe the subtasks that proces-

sors are executing, each processor now can be in one of A * (N + M) states, so the number

of system states is now A * D * p(A * (N +M))
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Assuming that the state diagram for utilization and contention of each individual

resource could be generated, the enumeration of all simple delay sequences (cycles) is costly,

even if a lower bound on the frequency of the sequence is imposed. The enumeration of all

complex cycles is, obviously, impossible. If all allowed simple cycles are enumerated, the

optimal one could be found by inspecting the impact of each sequence on a variety of per-

formance metrics. If sequence A is used, what will be the resulting latency of the task? If

sequence B is used, will the demand for resources be uniform or will it be very low except

for peaks right at the allocation level? Choosing the optimal sequence rests on the applica-

tion of an evaluation scoring to the candidate sequences.

The state generation technique arose from a method for determining latency schedules

for static and dynamic processor pipelines. The mapping of heterogeneous, dependent sub-

.'.sks onto a system of heterogeneous processors is a fundamentally more complicated prob-

lem than the pipeline control strategy generation problem. In the pipeline problem, it is

assumed that all of the states can be enumerated. This assumption is partly based on the

simplification that subtasks (in this case subtasks are pipeline stages) all execute in one time

unit. Furthermore, for processor pipelines, each subtask must be mapped to a unique physi-

cal resource. Finally, the state generation procedure fails when timing information is either

not fully provided or if timing is not static; the techniques do not seem generalizable to

dynamic timing systems.

The goal of this chapter was to provide some justification for simulation and heuristic-

based analysis by presenting the unsuitabilty of a methodology that is successfully applied to

problems in simpler domains. The enumeration of mapping sequences turns out to be as

problematic as the enumeration of subtask orderings that was demonstrated in the chapter on

static analysis. The next two chapters will present analysis methods that provide information

that is more suitable to both the configurer and the architect.
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CHAPTER 7

Schedule Simulation

An intermediate level of simulation models the assigning of subtasks onto a class two

allocation of resources under the direction of delaying heuristics. The technique is motivated

by a desire to experiment with and evaluate a number of heuristics for clipping peaks in

demand for resources without having to determine an architecture and implementation stra-

tegv for each of those heuristics. Some of the heuristics may prove to be useful for some

task graphs but impossible to implement. Others may be easy to implement given an under-

lying architecture but unworkable for some task graphs. Both an architect and a configurer

would be interested in this level of simulation: an architect would want to evaluate an ever-

expanding number of heuristics and refinements under classes of tasks and allocations. A

configurer, working from an architecture with a predefined set of supportable heuristics,

would want to investigate how these alternatives applied to a specified task and set of alloca-

tion constraints.

The chapter is organized as follows. Notation is introduced which provides a way of

describing the resource requirements of subtasks and of relating their initiation times and

delays. This notation involves the use of discrete variables represent resource utilization.

Subtask initiation and precedence-based timings are incorporated by index-shifting. The

simulator itself is then described as a time-step-based evaluation of resource demand and

supply and a subsequent application of a specified delaying heuristic. After the simulator is

introduced, some delaying heuristics are presented, along with the motivation for studying

them. As an example of the extensibility of this simulator into more implementation-specific

areas, two concerns of the architecture specified in Appendix A are introduced. These
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scheduling concerns are integrated into the scheduling simulator. Finally an example simula-

tion is presented to give the reader a feel for the usefulness of this methodology and some

results and conclusions are presented.

7.1. Representation by Sequences

A compact representation of the processing of a subtask is by discrete sequences. At

each stage of execution a subtask requires some resources. The evaluation of a subtask

discrete variable will yield a value of I when that particular subtask is utilizing a resource

(processing) and 0 when it is not. Consider the example graph in figure 7-1(a). A suitwol

discrete variable representation for subtask v, which executes for 3 time units is

v,[n ]: v:[0l = 1, v ll] = 1, v 121 1, v [3] = 0, v [4] = 0,. - "

A precise explanation is that the value of the variable represents the processor-space required

by that subtask. Since we are dealing with subtasks which confine themselves to execution

on one type of processor and only one processor at a time, this notation is suitable.

cF 1rc

Figure 7-1(a): An example task graph.
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Precedence relationships among the subtasks can be described by a precedence matrix

which aids in noting that successor subtasks are initiated only after their parent subtasks are

executed. In this notation, a subtask is considered to fire at some basic time plus the time

required by all of its predecessors to fire. For example, if the task in figure 7-1(a) is ini-

tiated at time 0, subtask v, would fire immediately, but subtask v, would fire after v1 , v2,

and v 3, as well as after the communications subtasks cI, c,, and c3. Precedence information

can be used to find the longest execution path to the subtask via the linear programming

method described in chapter 5. As explaine, in chapter 5, an alternate method is to calcu-

late and compare distances along all the paths from the subtask back to the (virtual) source

and then choose the current longest path as that which contributes to the time-shifting of a

subtask initiation. Subtask v. would, in effect, be delayed by its parent subtasks that lie on

the instantaneous longest path. If we note the latency of each of the subtasks on this longest

path bv L[v,] and L[c,] then given the longest path shown emboldened in figure 7-1(b), v,4

will be executed at time L v :]L [v3]PL [cl]+L [c31. Another way of expressing this is that for

a single initiation, the utilization of processors by v4 at any time n is given by:

v In - (L[vIl±L[v33]L[cIl--L[c ]+L[c3])]. More generally, the resource utilization of any

task v, is given by:

F r j=T 1I=Tl~
UTILIZATION = vi -max Y L [v] - max L[c,] ,

PEP J=Ovj E p I PJ P I 'O.C p

where p is a set of subtasks on a path from the subtask v, to the virtual source and P

encompasses all of the sets p. The notation provides an easy way of representing resource

utilization when a task graph is executed. If a subtask is initiated at time 0 and requires

resource type X, a measure of the resources required by that subtask at any time subsequent

to initiation can be retrieved by the discrete representation:

X-Required[n] = vl[n].
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\ \.

Cl

C2

c3

Figure 7-1(b): A longest-path analysis of the task
graph in 7-1(a).

Since, in the example, both v, and v4 utilize type X processors, a more complete description

would be:

X-Required[n] = vl[nl + v4 - max ( LvJ- max Lc,

I pP I) O.°E J) 1j.cJ E  P

where p is a set of subtasks on a path from the subtask v4 to the virtual source and P

encompasses all of the sets p.

An execution of a task graph with an interarrival time of IAT is really the instantiation

of all subtasks with start times of 0, IAT, 21AT, Each task arrival then has a start time
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which is an indexed multiple of the interarrival time. A representation of the utilization of

processors by subtask v, across all initiations of the task would be:

X-Required[n] = vl[n--0 + vl[n-IAT] + vln-2IAT] +

Generalizing one more step, since both v, and v4 utilize type X processors, a complete

representation would be:

X-Required[n] = vn] v4 [ max L[v]- max Lc[c]
• ~ ~ pE Plov E. p pP Z/o

r j=T
+ vn-IAT] + v4 n -LAT -max L[v] - max L[cj]

=O.v j E pIEP l=O.c C P

v.[n-21AT - max ITL - max L
•j P / Isov - Re 1 j=0, j C.

Once the framework for representing subtasks is in place, it is easy to add delays tok

each subtask that are incurred because of competition for resources. Remember that this

competition is what chacterizes a class two allocation environment. The initiation of sub-

tasks can be delayed as a result of buffering to reduce instantaneous demand for resources.

The above framework is useful because the delay of a subtask is the sum of any delay

applied to it directly plus the delays applied to its predecessors. This delay-precedence rela-

tionship can be cleanly added into the representation. The delay incurred by subtask vi

which is initiated as part of task arrival m is denoted Djm]. A subtask v, which is part of

initiation m executes at time h:

M C= nP-p ,,Y max tLv,]+ [m) maxD,[m L[cJ+Dcm].
I 0.p p p EP L = 'cj  e p

7.2. Schedule Simulation

The above notation provides a convenient framework for manipulating and representing

start times and delays of individual subtasks. The schedule simulator, structured around the
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repeated evaluation of the resource-utilization equations, can track allocation supply and

demand. It is called a schedule simulator because its objective is to evaluate scheduling

ahrnatives-heuristics that buffer demand and underlying initiation mechanisms--in the

presence of supply and demand parameters such as the task description and allocation.

The schedule simulator takes as input a description of the directed task graph similar to

that given to static analysis techniques. A specific ordering to subtasks must be specified

and some method of determining the execution time for each subtask must be fully specified.

The simulator also receives a description of the resources that are available. This descrip-

tion, for now, is limited to specifying single typed resources. The reason for this is that it

simplifies describing two subtasks which present different requirements to the same resource

type (modes). In addition, it allows the simulator to more easily describe changes in the

processing behavior of individual subtasks. The front end of the simulator performs the

graph expansion and transformations necessary to represent subtasks in a unified manner and

to explicitly represent the particular link orderings that were chosen. A representation of the

utilization of resources by subtasks as discrete variables is then created. A structure which

holds for each subtask the possible paths through the task graph hick to the virutal source is

created from the subtask precedence matrix. This structure is created by a recursive depth-

first search procedure and is used to evaluate the execution state of subtasks while the simu-

lator is running. Generating this structure reduces the computation that must be done at

simulation runtime by facilitating the use of efficient indexing schemes. This representation,

as explained earlier, directly allows delays to be included in the description of when a partic-

ular subtask executes.

The scheduling simulator is time-based: the simulator does some processing for the

"current time" and then increments its notion of time by one unit. Since the simulator

deals on the level of subtasks, its granularity is significantly larger than an architectural
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simulator. The processing (or communication) time of subtasks must all be specified in

sonic common, smallest increment; the choice of increment is application specific but reason- - -

able choices are tens, hundreds, or thousands of microseconds.

At each time increment, the simulator browses through subtasks that are part of the

task that has most recently arrived and subtasks that are part of tasks that have arrived in the

recent past. Each of those subtasks is described by a discrete variable which gives its own

resource requirements time-shifted by the time of subtasks which precede it and the delays

which it and its predecessor subtasks incur. Once all of the time offsets have been com-

puted, the status of each subtask-waiting to be initiated, waiting for other subtasks to

finish, already initated, just finishing, and completely finished-can be immediately inferred.

If a subtask is already initiated, it continues to require resources. If a subtask is waiting to

be initiated, it represents a new demand for resources.

The simulator first assigns resources to subtasks that are in the midst of processing;

this satisfies an underlying assumption about preemption. The resource assignment is done

by matching the resource required by each subtask to a description of the resource pool that

was provided to the simulator. If there is a surplus of resources, the new demands can be

met. New demand may, however, be greater than available, unassigned supply. This is

what characterizes a class two execution environment.

Delay heuristics come into play at this point. A subtask servicing mechanism is the

arbitrator between demand and supply. The simulator pares down demand by delaying sub-

tasks that find themselves at the head of subtask delay lists. The lists are constructed by

ordering subtasks according to one of several scoring algorithms. The scoring algorithms

represent the application of queue servicing rules or delaying heuristics and are based on

task, architecture, and mapping parameters. The simulator mechanism for this paring is

fairly simple: the delay coefficient, D,, which corresponds to that particular subtask/arrival is
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incremented.

Demand for all resource types must be examined so that it along all resource dimcn-

sions, instantaneous demand is less than or equal to instantaneous supply. If any delaying is

made, the timestep is resimulated to see if there were lny unanticipated effects of that delay-

ing. For simple graphs, this resimulation is not important. Resimulation is necessary to

catch second-order effects caused by graphs which contain complicated signalling constructs

or which contain inter-arrival initiations.

The simulator continues step-by-step subtask assignment and, along the way, monitors

results of the simulation. The choice of what to monitor is a critical element in this simula-

tor. Unlike the tools which support the state generation and enumeration methodology, this

simulator does not explicitly keep track of, or search for, initiation or mapping cycles. In

addition, the state of the system is not explicitly enumerated. The only information that is

saved from step to step are the delay coefficients because they arc needed to compute the

status of subtasks. The simulator can be instrumented to generate performance metrics such

as latency and throughput. These metrics can not be directly used to evaluate a

configuration architecture. Instead, they can help to provide a rejection test: if the combina-

tion of the task graph, allocation, and delay heuristics does not meet an application's perfor-

mance standards under this simulation, then it will not perform better in an architectural

simulator (or a real system). Subsequent detailed simulation will yield better performance if

there is some peculiarity about the synchronicity of tasks that is revealed in the scheduling

simulator and is masked in the architectural simulator. In this case, it is still better to

address these synchronizations in the choice of allocation and ordering parameters than to

assume that they will never occur under detailed simulation. If the allocation and mapping

parameters do not adequately serve task and arrival demands, this simulator should help

determine whether there are fundamental problems in the allocation (too few resources) or if
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the assigning and delaying heuristics are poorly matched to the task. Aside from using per-

formance metrics to provide rejection tests, the simulator can provide runtime information

about the low-level sequences of initiations and delays. For example, bounds can be placed

on the delaying of critical subtasks and the simulator can detect whether those bounds are

exceeded. This is useful in determining delaying approaches which favor initiation of sub-

tasks that lie along critical paths of the task.

7.2.1. Complexity

Some bounds must be placed on subtask delays in order to coerce some level of sys-

tem performance. If a delaying heuristic causes some subtasks to delay indefinitely, the

heuristic should probably be modified. A more practical concern is that the simulator should

be required to evaluate a stable number of subtasks: tasks that arrive and never leave require

evaluation at each stage of simulation. 1f tasks could take infinitely long to execute, then the

number of subtasks for the simulator to consider would grow linearly with the timestep of

the simulation. Note that the restrictiveness of the maximum-delay bounds is not at issue:

since they are upper bounds, they can be made generously large and still serve both above

purposes. If some latency bound may have been placed on the task graph as part of a set of

configuration performance metrics then the choice of bounds is made a bit easier: if the task

must complete in B time units, then no subtask can be delayed by more than B units.

Moreover, subtasks along the longest path (which has a latency of, say, L) can be delayed

by an aggregate amount of B - L units.

The complexity of this simulation lies in the size of various parameters. Each simula-

tion cycle will require the evaluation of all subtasks, S, in each task arrival that must be con-

sidered for the current timestep. The number of arrivals, A, that must be considered is

related to the maximum latency of the task set, B and the task interarrival time, IAT. This
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relationship is as follows:

A =B div IAT + I if (B tmod IAT) 0
0 if (B od IAT) = 0

There are A*S subtasks to evaluate per timestep. Each subtask requires a computation of its

current initiation state, which involves a summation over all of its predecessor subtask paths.

At each arrival, a new task must be considered but the oldest aiival that was being

evaluated can be removed, as can all delay coefficients saved for subtasks for that arrival.

7.2.2. Delay Heuristics

An arrival-based servicing policy biases access to contended resources towards sub-

tasks that have certain age characteristics. In the architectural specification in Appendix A,

tasks are tagged with an arrival number. This arrival number allows all of the subtasks in

the system to be ranked according to relative age. One arrival-based heuristic orders all of

the subtasks according to age and then initiates tasks which are oldest. An intuitive explana-

tion is that tasks that have been waiting the longest are, in some way, the most deserving of

resources. This policy is similar to age-based service policies in operating systems. The

longer a process sits on a run queue, the higher its priority gets, until it is eventually run.

An implementation structure here could be some sort of FIFO. An alternative heuristic

would order all the tasks and then bias servicing towards tasks that are the youngest. In this

case, resources are allotted to tasks that haven't been aging, with the assumption that new

tasks which are being processed efficiently should get whisked through without being bur-

dened delayed by old tasks that have already been tainted by a delay. A youngest-first pol-

icy is similar in implementation structure, though not exactly in intent, to least-recently-used

memory management policies which allow memory pages which are most active to be

preserved in fast, primary memory, while pages which are not as recently active are sent

back to secondary storage.
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The aging heuristic which biases towards older tasks is a flow-control heuristic. In a

task servicing environment, a good general observation is that old subtasks are old because

either they are not ready to be serviced, i.e. not all of the parent subtasks have completed,

or adequate resources are not available to allot to them.1 Schedule simulation has shown that

over a broad range of task graphs, the application of this policy causes all tasks to

complete-the flow of tasks into and out of the system is conserved-though not necessarily

at a minimal latency.

The second policy, bias towards younger tasks, achieves higher latency performance

for some subtasks at the expense of others. When properly tuned, newly arrived tasks will

get preference for resources and will execute at a minimum latency. The task latency will

not necessarily be as low as that in a class one execution environment because there may be

competition for resources within a task and fully tuning the aging computation may not be

possible. When newly arrived tasks get preference for resources, something must get

crowded out. Subtasks that are downstream in the graph will tend to be unfairly biased

against subtasks of newer arrivals which are near the top of the task graph. What this

means is that older subtasks will tend to get crowded out of servicing by newer subtasks.

Tasks which have relatively high peaks in resource demand caused by competition among

different arrivals will be most susceptible to this crowding. The subtasks which belong to

older arrivals will, when this demand peak occurs, become delayed and must wait for all

younger-arrival tasks to receive service. If new tasks arrive and begin to compete for these

resources, the subtasks that have been waiting around will get crowded even more: the

delaying gets larger and larger until the subtask is hopelessly aged. This heuristic is interest-

ing because although it fails in resource-poor environments, in some time-critical applica-

tions, it is less important that all results get processed as it is that some results get processed

1 For the purpose of this simulation, the costs involved in attempting to service tasks which are not ready

are ignored.
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in a timely manner. A more realistic application of an aging heuristic would take both

arrival and subtask age into account. The two age heuristic domains, arrival and subtask

hierarchy, can be combined in the obvious ways.

7.2.3. Cost Based Heuristics

Another class of heuristics is based on the evaluation of the task graph and the assign-

ment of costs to the delaying of certain tasks. Several factors come into play when consid-

ering the cost of delaying a particular subtask. First, a subtask may be part of the critical

(longest) path of the task graph. If this is tre, then delaying it will directly affect the

latency of the graph. Subtasks that impose larger latency costs could be prioritized over

non-critical-path subtasks. A second factor is the hidden cost of delaying. If a particular

subtask with many successor subtask chains (fig. 7-2) is delayed, then all of those chains

will be delayed. This naturally poses a bias towards initiating tasks which are towards the

top of the task graph over those near the bottom. For example, in figure 7-2, subtask v2 has

7 successor tasks, whereas subtask v3 has only 3 successors. In this example, v, would have

a higher cost-of-delaying than v3. As mentioned earlier, this cost method should not neces-

sarily be extended into inter-frame contention because biasing towards both earlier subtasks

and earlier arrivals can, due to inter-arrival competition, result in earlier tasks never complet-

ing.

7.3. Architectural Implementation Considerations

Depending on the implementation architecture, it is likely that many of the above

heuristics can not be applied globally. That is, many of them require keeping track of the

status of other subtasks and resources. For distributed implementations, it is never cost-free

to exchange state and control information about resources and subtasks; furthermore, the pro-

cessing and transfer of this information can add to the load that is being monitored: the

II
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Figure 7-2: Note that processing subtask 2 has 7
successors, whereas subtask 3 has 3 successors.

uncertainty principle is applicable to network instrumentation. In addition, underlying archi-

tectures may have low-cost primary mechanisms for distributing subtasks and higher cost

secondary mechanisms. From an architect's point of view, the design of these low-cost

mechanisms warrants extensive experimentation and simulation. From a configurer's point

of view, the low-cost mechanism may or may not be usable given a particular application.

The evaluation of higher cost and lower cost mechanisms needs to be supported. Scheduling

simulation provides a route to the cheap investigation of these approaches. Two examples of

this investigation will be given. The first is the evaluation of an underlying low-cost task
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servicing mechanism provided by the d-ALPS architecture in Appendix A.- Given this

mechanism, schedule simulation can be used to compare higher cost but possibly more suit-

able servicing mechanisms. The second is the implications of a limited input queueing

structure which in turn requires that resources be committed to serving a subtask some time

before actual initiation. This results in additional utilization of resources. In a class one

environment, the timing of the committing periods can be modelled statically, and the addi-

tional load encoded in an expanded demand graph. In a class two environment, this is not

possible: the burden changes dynamically. Schedule simulation can present the impact of

the requirement to bind resources in either environment and can evaluate alternative commit-

ting strategies.

The low-cost scheduling in the distributed implementation described in Appendix A is

&oased on a local and global round-robin servicing of tasks. Each node in the architecture

has an output queue that is served in a round-robin fashion. The local queues are arranged

in a logically circular queue, each receiving a "control token," allowing it to attempt to ini-

tiate all of the children of the subtask that is on top of the queue. As a basis for com-

parison, facilities to simulate this low-cost scheduling mechanism were built into the

scheduling simulator. These facilities involved creating structures to represent a circular list

of subtask queues. The simulator maps a subtask to a particular resource (assigns the sub-

task) when it initiates that subtask, and provides this information to a scoring function which

orders subtasks based on location. It should be mentioned that, in the general (ideal) case,

the location is an arbitrary subtask attribute. However, in configurations with small node

counts, location wiU be related to the particular timing of graphs with concurrent elements.

That is, if subtask assignment is based on location, then timing-adjacent subtasks will be

mapped to location-adjacent resources.

2 This appendix gives a specitication for a distributed ALPS architecture (d-ALPS) which is comprised of a
token-bus based connection of primitive-control unit pairs.
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A reasonable implementation of some of the above heuristics is to layer them under the

low-cost control token passing mechanism. The heuristic is then applied to each subtask in

a local output queue but servicing is still passed according to location. Altering the local

servicing policy-the servicing mechanism that each node employs in isolation-to imple-

ment one of the above heuristics would not be terribly difficult. Given the architecture

described in Appendix A, sorting and costing functions required for implementation of one

of these heuristics could be executed when the node would be otherwise idle. Changing the

global servicing! policy-the node-to-node round robin control token passing-could be

difficult and expensive. Since the above heuristics require several stages of transferring or

exchanging information, a complete implementation implies that the low-cost control-passing

mechanism would have to be bypassed.

7.3.1. Processor Binding

A particular architec:-,1 problem that warrants investigation via schedule simulation is

processor binding. The architectural specification in Appendix A describes a system in

which output queues are used to buffer data for subtasks that have not yet been initiated on

processors. The data for a particular subtask may logically reside with several predecessor

subtasks and physically may sit in several different output queues. As explained in chapter

4 and in the d-ALPS specification, a priority link is used to establish logical subtask to phy-

sical primitive mappping. This process is implemented in an architecture where there is no

input queueing of subtasks except for the subtasks that is about to execute. That is, in figure

7-2, a processor of type X can not accept data for subtasks v4 , v5 and v6 at the same time.

This lack of input queucing implies that all data for a subtask (all communications subtasks

preceding that processing subtask) must sit in output queues until a physical processor has

been bound, or instantiated to that particular subtask. Furthermore, if a processor is bound

to a particular subtask. it must stay bound until the remaining communication subtasks
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execute. This identifies a fundamental utilization problem. If the binding (priority) com-

munication subtask is ready to be initiated before the remaining communication subtasks are "

read', the processor will sit committed but idle during the interim. Given this implementa-

tion strategy the bound-but-not-executing state represents a systematic utilization

inefficiency.

7.3.2. Commit Groups

There is a fundamental representation extension which must be made to describe pro-

cessor committing. Unfortunately, the purity of directed flow graphs composed of nodes

with independent costs is lost. Consider the task graph in figure 7-3(a). Subtask v, initiates

communication subtasks c: (a broadcast) and c. which in turn cause processing subtasks v2,

v%3, and v, to execute. Both c: and c, are the binding subtasks in that they cause resources

to be committed to processing v 2, V3, and v4. A graph expansion can be performed which

causes the communication subtasks to be explicitly represented and ordered according to a

predefined sending priority: cl < c, (fig. 7-3(b)) The graph now looks similar to those in

chapter 4. Processors for v, and v2 would be found before the processor on which v,

resides initiates cl. In a class one allocation environment, these processors are assigned

instantaneously. In a class two allocation environment, finding these processors could

involve delays due to contention for these resource types. Regardless of the allocation

environment, after processors are found, c I can begin. Again, in a class two environment, c1

may not begin immediately. The allocated processors remain allocated-but-not-processing

until cl completes. Then their state changes instantaneously and they are now executing v2

and v 3. As soon as cl completes, the same committing and then communicating process is

undertaken for V4. Figure 7-3(c) shows this process graphically. Nodes v2' and v3' represent

commit "subtasks" for v, and v 3. The time they require is dependent on the time it takes

for c I to be initiated and then executed. In a class one allocation environment, this is simply
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Figures 7-3(a) and 7-3(b): An example task graph and the
expansion of 7-3(a) explicitly representing communication

subtasks and a single subtask ordering.
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Figure 7-3(c): An expansion of 7-3(a) showing
resource committing.

L [cj. In a class two allocation environment, this is a variable time.

A reasonable way to denote this variability is to define the collection of nodes which

participate in the committing. A "commit group" is then composed of three elements. The

first is set of subtasks that must be created to act as commiting nodes; in this example, v 2 '

and V3' comprise this set. The second clement is a (single) communication subtask which

can be initiated after the commifing nodes are assigned; in this example, c l can be sent after

v,' and v,' arc initiated. The final element is a signal node whose initiation represents the
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end of the communication subtask and causes the processors which were "executing" v 2'

and v3' to begin execution of subtasks v2 and v 3. This signal node is so named because, in -

effect, it signals that v,' and v 3' are finished and v2 and v 3 can begin.

Commit groups can be used equally well to represent the merging of several communi-

cation subtasks to a single processing subtask. Consider the task graph in figure 7-3(a).

The merging can be expanded to represent predefined priorities: c3 < c4 < c5. In this exam-

pie. subtask v5 must be committed before c 3 can be sent, and can be initiated after c5 is sent;

for the merging case, the signal node follows the last merging communication. Figure 7-3(c)

depicts this committing.

7.3.3. Integration

The commit groups can be integrated into scheduling simulation cleanly by observing a

few basic principles. First, from a time-step simulation point of view, the simulator can

reference some structure holding the status of various commit groups to investigate the state

of commit subtasks. The communication subtask is given an infinite initial dclay until the

commit subtasks are assigned; the commit group then causes that initial delay to be set to

whatever delay was incurred in assigning commit subtasks. This prevents the communica-

tion subtask from being initiated until at least the commit subtasks are initiated. The execu-

tion time of the commit subtasks is set as infinite until the signal node is reached; it is then

set to zero so that in the next timestep the commit subtasks will not require processors and

the processor will be available for the processing subtasks. The above technique has been

fully implemented as part of the scheduling simulator. A commit group manager detects and

creating commit groups for various task graphs as required. During runtime, it monitors the

progress of signals and manipulates the delay coefficient lists and execution times to accu-

rately model the scheduling implications of processor commits.
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7.4. An Example

An example simulation is as follows. Figure 74(a) shows a reasonably complicated

task graph. This task graph demonstrates parallel demands for both communications and

processing resources. Note that communications subtask cl is a broadcast to subtasks v, and

v3, whereas c 2 initiates c2. The graph is expanded to represent both the subtask orderings;

and resource bindings (fig. 7-4(b)). For this example, resources must be committed to sub-

tasks before the subtasks' preceding communications. For example, in figure 7-4(b) proces-

sors for subtasks v, and v2 must be assigned before cl can initiate. A more complicated

example is that a processor for subtask v4 must be assigned before communication c 4 can

initiate, but the subtask can not execute until after c5 has occurred.

vo Source

C

C

V1iv v3
A v2 A

c2 c3 c4

V5
C

c5 v5
Sink

Figure 7-4(a): An example task graph.
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Figure 7-4(b): An expansion of the task graph in 7-4(a)
to show subtask orderings and resource bindings.

Tables 7-1(a) through 7-1(c) provides subtask allocation information. Note that a class

two execution environment has been created by severely restricting the numbers of proces-

sors and communications channels and by choosing a relatively low interarrival time. The

ratio of the interarrival time to the latency, should this graph be executed in a class one

environment is about five to one. That is, there are about five new task arrivals during the

execution of one task. This ratio is incresed in a class two environment since the latency
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7-1(a): Processor Subtask Information

Subtask Graph Level Processor Type Execution Time (usec)
v 0 Source 2000 (IAT)
vl 3 A 2500
Q 5 B 3500
v3 5 A 2000
v4 5 C 4200
v5 8 Sink 0

7-1(b): Communication Subtask Information

Subtask Graph Level Communication Time (usec)

cO 1 300
cl 3 200
c2 4 900
c3 6 400
c4 4 300
c5 6 700

7-1(c): Allocation Information
Resource Allocation
Source I

A 10
B 10
C 5

Sink I
Comm I

Tables 7-1(a) through 7-1(c): Subtask and Allocation
Information for Schedule Simulation Example

will increase, but the arrivals will remain fixed.

Simulations were performed choosing the six different delaying heuristics listed in table

7-2. In this table abbreviations of each of these heuristics is also provided. Task latency
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Delay Heuristics for Example Simulation
Abbreviation Description
FF Delay younger arrivals
FFFA Delay younger arrivals/higher level subtasks
FFBA Delay younger arrivals/lower level subtaskslder subtasks
BF_FA Delay older arrivals/higher level subtasks
BFBA Delay older arrivals/lower level subtasks
LO Use location-based delay mechanism of d-ALPS (Appendix A)

Table 7-2: Delay Heuristics for Example Simulation

was recorded to give an example performance comparison. Figure 7-5 shows the latencies

resulting from the application of the six heuristics. Using three of the six heuristics, the

simulator demonstrated that the combination of the allocation and delaying heuristic could

adequately process the task graph although with slight differences in average latency. These

three heuristics all involved the biasing of delays so that older tasks and/or subtasks were

given preference when demand outweighed supply. The two heuristics which biased

towards newer tasks caused the system to initially deliver tasks at low latency, but once the

"pipe" filled up, the older tasks which had not yet finished were crowded out. The final

heuristic is representative of the queue servicing mechanism used by the architecture

described in Appendix A. For this graph, it can be considered equivalent to a random delay

servicing heuristic since the task graph timings are not highly synchronized. It also failed to

provide flow control for the graph executed in this allocation environment.

7.5. Results and Conclusions

The scheduling simulator provides a framework for investigating subtask mapping in a

class two allocation environment. The principal parameters to any class two system are the
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Figure 7-5: Latencies resulting from the application or six
delaying heuristics on the task graph of figure 7-4(b).

task graph, the specific graph detailing parameters, the allocation, and the mechanism(s) that

the underlying architecture will use to assign subtasks to resources. The simulator provides

a step-by-step statement of the assignment without requiring all of the principal parameters

to be unified into a single mathematical or state relationship. As the scope of this thesis is

to present a range of analysis methodologies which support the investigation of mapping

parameters such as delay heuristics, evaluation of these heuristics beyond a broad and prel-

iminary level fals beyond its scope. Some preliminary investigations with this simulator

have shown that the low-cost location-based assigning mechanism utilized by the architecture

in Appendix A does not regulate the latency allocations as well as age-based heuristics in
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highly constrained allocations. Furthermore, heuristics which bias towards newer jobs tend

to yield a high variation in latency. It it anticipated that this simulator will be useful in con- "

ducting a more thorough study over a broader range of problem graphs and allocations.



CHAPTER 8

Architectural Simulation

This chapter will introduce architectural simulation as methodology for studying alloca-

tion and scheduling problems. A simulation framework will be introduced, This framework

has been developed to support the d-ALPS architectural specification described in Appendix

A. It includes a task and configuration design capture facility; a simulation interface and

interaction environment; and instrumented, event-based architecture simulators. The chapter

will provide some example simulation studies which demonstrate how simulation can be

used by a configurer to decide upon a particular application configuration and by an architect

to gain insight into the architecture itself.

An architectural simulation provides detailed timing information about the progress of a

task graph when it is executed on a particular system. The system includes the mapping

parameters and servicing heuristics that the architecture employs, as well as some model of

the implementation of those parameters so their costs can be assessed. To narrow the field

of this discussion, the d-ALPS architectures in which we are interested can be broadly

characterized as a networked or bus-based multiple processor system. The simulation can

represent system functions at different levels of detail, and in doing so can vary in accuracy

in its representation of the architecture it is modeling. For example, the representation can

be at the gate level, the functional block level (processor-memory-switch), or the network

node level.

There are a variety of support environments for modeling concurrent systems at the

varying representation levels. On the gate level, a set of simulation tocls under the Mentor

Graphics IDEA System [Ment84] provide support for the design and analysis of digital
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circuits. The event driven simulator, SLM, verifies the functionality of a design that has been

specified via design editors. The simulator expects that systems be defined to the chip level

and provides dCailed timing information, taking into account technologies, propagation

delays, and logical behavior. While a SIM simulation would most accurately reflect the logi-

cal functionings of individual elements of a concurrent system, it would be inappropriate for

modeling the behavior of collections of these elements because there are no abstractions for

higher level behavior modeling. On the functional block level, a PMS-level simulator, Net-

work 11.5 [Garr87], provides a simulation of computer systems that are described by process-

ing elements, data transfer devices, data storage devices, (software control) modules, and

files. The event-based simulator activates control modules according to time, message, and

semaphore conditions. The control modules then initiate activity among the hardware ele-

ments. The simulator is intended to model concurrent systems and reports on higher level

events such as utilization and status of network resources and run-time reports of significant

events. Simulation at this level appears to be more appropriate to model the behavior of

concurrent elements. However, this particular tool is not suitable for distributed and

dynamic, message-dependent control systems. The simulators that were developed to sup-

port the d-ALPS architecture described in Appendix A fall between these levels. They con-

sider the architecture to be composed of a number of nodes which run an identical protocol.

Each of these nodes, in addition, has separate resource attributes and processing capabilities.

The simulators model the execution of the common protocol each node participates in to dis-

tribute and process subtasks.1

Architectural simulation is an intuitively simple and computationally manageable

approach to studying the allocation and mapping problems associated with the scheduling of

a task graph onto a set of processors. The methods described in previous chapters introduce

' Detailed iWformation about these simulators can be found in [Leib86), [McCo871, and lMano87).

.. .. . .... ... .. ... ..I1 1 11
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ways in which the task graph and the mapping parametcrs can provide allocation and map-

ping information and how basic architectural assumptions can be inserted into the methodol-

ogy representation. Simulation allows parameters of the underlying architecture to coexist

with the task graph and mapping parameters to provide a view of how a workable system

would perform under that combination of parameters. These architectural factors include

details of task distribution methods that can not be abstracted into higher level representa-

tions, timing information, aid protocol implementation costs. As mentioned in previous

chapters, some of this information can be represented in usable hierarchies, such as state

diagrams or expanded directed graphs. But these approaches can not be expanded

indefinitely. The modifications and special-cases that must be made to include this informa-

tion will eventually obscure the representation and reduce the feasibility of analysis tech-

niques which rely on the representation. Furthermore, the complexity of various analysis

techniques multiplies with the number of states or nodes that are added to expand the

representation.

The type of information that architectural simulation provides depends to a large extent

on the level of simulation that is performed, the limitations of th.. simulation implementation,

and the limitations of the simulation environment. The level of simulation, as explained ear-

lier, can be structural or behavioral, and can provide, as its highest level of granularity,

information on a gate level to information on a network transaction level. Problem

definition plays a key role in deciding upon the level of simulation. A gate level simulator

would be useful to a builder of a high level architectural specification. To study allocation

and mapping problems in the context of a d-ALPS specification, a protocol-level simulation

is desirable, provided that reasonable timing costs of those protocol transactions are assessed.

The simulator implementation refers to the method by which the simulator is constructed, the

capabilities of the underlying simulator support mechanisms, and the costs of implementing
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additional instrumentation. The simulation environment can delimit the interaction boundries

of the simulator. It inctudes the types of information that are provided to the simulator, the

ways in which the simulator can be controlled, and the extent to which interesting parame-

ters can be defined or specified. It may be difficult or impossible to extract certain informa-

tion or perform unanticipated monitoring functions if the interaction environment is not gen-

eralizable.-

Architectural simulation can be employed by both the architect and the configurer to

study a particular underlying architecture as it applies to example applications. A configurer

takes the underlying architecture as a given. The performance of a configuration on an

application is investigated in a specify-investigate-respecify cycle. The configurer specifies

the task graph and associated resource demands, creates an initial configuration, simulates

that configuration as it operates on the task graph, evaluates its performance, and modifies

the configuration according to simulation results. This configuration cycle is facilitated by

simulators that provide monitoring functions can be corroborated with the general perfor-

mance criteria by which the configurer is guided as well as additional information which

may ellucidate why a configuration doesn't meet those criteria. Additional information may

be resource-specific, such as load on, or contention for, particular processing or communica-

tion resources, or it may be resource general, such as queue utilization.

The simulators and simulation environment that have been built to support the d-ALPS

architecture project provide the following information transfer. The user enters a task graph

and configuration architecture through a design capture and editing facility [Gold86]. The

task graph is comprised of a directed graph where each node contains a processing resource.

A processing primitive library which maintains a description of the types of primitives avail-

2 Though it seems unintuitive, it may he more difficult to design methods of specifying measures and com-

municating that information to a simulator than actually computing those measures.
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able to the configurer can be accessed and updated at this point. The architecture is

comprised of pools of resources which correspond in type (but not necessarily in number) to

the primitives in the task graph. When a simulation session is initiated, the applicaiton task

graph, the configuration architecture and the primitive library are downloaded to the simula-

tor. The user then chooses the types of measurements that the simulator should monitor and

report. These measures include task latency, resource utilization, and memory utilization.

For each of these measures, a domain can be chosen. The domain is the category over

which the measure is monitored. Categories that are presently supported are system-level

measures--inclusive of all system resources--or resource type-level measures; additional

domains can include subtask- or arrival-level. The simulation is commenced and the user

receives a view of the d-ALPS architecture in terms of the monitoring measures that have

been specified.

8.1. Example Configuration Study

The following example demonstrates how a configurer might use simulation to decide

upon an application architecture. The example is taken from [Hart86] in which it is used to

demonstrate the functioning of a data flow-based signal processor, DFSP. Their architectural

approach makes use of a centralized task dispatching mechanism which controls the execu-

tion of a bank of execution-independent processing elements. The processing elements per-

form block processing operations, fetching data from a shared data storage. They are con-

trolled via operation packets and they return result packets to a central activity store when

they finish execution. The activity store contains a representation of the directed task graph

and performs operand matching, memory management, and activity detection operations.

The example task graph is provided in figure 8-1. This task is called a three sensor

problem, as its function is to take inputs from three geographically distributed sensors that
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Figure 8-1: A task graph for the three sensor problem.

listen to a signal emanating from a single source. The signals at the sensors should be ident-

ical except for additive noise, signal strength, Doppler shift, and a delay proportional to the

distance between the signal source and the sensor. A simplification of the problem considers

a single transmitted frequency band and looks for the distance differences in the signals to

triangulate the location of the source. More details of this application can be found in

[Mint8l]. The simplified signal processing algorithm is as follows. The signal is initially

demodulated and an FIR filter is applied. The Winograd Fourier Transform (WFT) of each

signal is then taken. The signals are then cross correlated by multiplying the transformed

signals together point-by-point, performing an inverse Fourier transform (iWFI), and search-

ing for the maximum in the lower half of the resulting sequence (peak select). The first task

set, the FIR filtering and WFT are performed by a single processing resource. This resource

will be denoted: FIR-WFT. The second task set, the muliplication, iWFT and peak select,

are all performed by a second resource. This resource will be denoted: Mult-iWFT. The

resulting value (and index) for each correlated signal is sent to a display processor. Process-

ing requirements, in terms of sampling rates and block sizes, were provided with this exam-

I
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pie. They are listed in table 8-1.

There are several ways of considering a configuration problem. Hartimo et al describe

the processing times they used when simulating this example task graph on their architec-

ture. The processing times were based on the number of instructions each of the four

macro-operations (filter, WFT, vector multiply, peak select) required times the cycle time of

the signal processing primitive (IBM RSP research signal processor). The processor bank in

the DFSP architecture was comprised of these general purpose processors.

One perspective of the configuration question is to assume that high-speed special pur-

pose primitives can be used for each of the above macro-operations. Execution times for

these high speed primitives can be determined by consulting the literature. Once execution

times have been chosen, the configurer can be provided with a primitive library which con-

tains candidate primitives. A configurer would then want to find a d-ALPS configuration

architecture which meets the throughput and latency requirements of the task at hand. For

the purpose of this exercise, we will consider two configuration scenarios. The first is a

resource-constrained scenario and the second is a task requirement-based scenario.

Processing Requirements
Resource Requirement
Sourcel 1K words per 10 ms
Source2 1K words per 10 ms
Source3 0.5K words per 10 ms
FIR-WFT 1K words per 10 ms
Mult-iWFT 1K words 10 ms

Table 8-1: Processing Requirements for Example Simulation Study.
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The resource-constrained scenario is as follows. Suppose the configurer can build a

system with a fixed number and composition of resources. What is the maximum sampling

rate (interarrival time) that the system can support? In this case we will assume that two

types of fast primitives exist; the first one can perform the demodulation, FIR filter, and

WVFT, and the second one can perform the complex multiplication, iWFT, and peak select;

this breakdown is shown in figure 8-1. For this example, we choose an allocation presented

in table 8-2. Note that the execution times of the primitives are relatively fast. Simulation

can provide us with the minimum interarrival time (TAT) by starting with a generously large

IAT and iteratively increasing it until the system reaches capacity. A configurer uses this

simulation by specifying the task graph, choosing these two types of processing primitives

for the two subtask-types, configuring a fixed-allocation architecture as described in table 8-

2, and providing an initial interarrival time. By measuring system latency and processor util-

ization, the capacity of the system can be monitored. Table 8-3 shows the effect of decreas-

ing the interarrival time.

Allocation Information
Type Processing Time Allocation

Source 1K every 10 ms 3
FIR-WFT 5 ms 7
iWFT-MULT 6 ms 7
Sink 0 1
Bus 10 Mwords/second I

Table 8-2: Allocation Information for Example Simulation Study.
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_Performance Information

Interarrival Time Latency (avg.) Peak FIR-WET Use Peak Mult-iWET Use
(.sec) (4.sec) (out of 7) (out of 7)
10000 12760 3 3
7000 12500 3 3
5000 12800 6 5
4000 13000 6 6
3500 13700 6 6
3000 16800 6 7
2500 unstable 7 7

Table 8-3: Simulation Results for Example Simulation Study.

Task throughput, the rate at which tasks are processed by the system, can be derived

from latency information by noting that latency is recorded as a latency event. The time

differences between these events indicates the throughput, and should, on average, be equal

to the task interarrival time. The system met this throughput when operating at all arrival

rates except at the 2500 microsecond interarrival time. From table 8-3 it is evident that as

the demand for processing and communication resources increases, the resulting contention

adds to the task latency. At an IAT of 2500 microseconds, the peak demand for processing

resources reaches 100% for both types of primitives and the throughput of tasks no longer

matches the interarrival time. Among these simulations, an IAT of 3000 microseconds is

minimum.

A second configuration scenario is to consider as a task requirement a specific interar-

rival time and to find an allocation that is suitable. For this example, we will assume that

the configurer must find an allocation which executes the task graph in figure 5-1 with an

interarrival time of 2000 microseconds. The configurer can specify the task graph in the
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same manner as above, but will generate an architecture that is resource-rich. Such an archi-

tecture can be found by using the static analysis techniques of chapter 5 to find (approxi-

mately) the number of resources needed to create a class one execution environment. Alter-

natively, the configurer can rely on past simulation experience, such as the previous simula-

tion, to decide on a generous allocation. The allocation in table 8-4 will suffice as an initial

guess.

Simulation to fird the minimum feasible allocation can proceed by examining the load

on various system resources as the quantity of those resources is iteratively lowered. Table

8-5 shows the effect of decreasing processor resources. The latency increases slightly until

the allocation is insufficient; at that point the system no longer delivers tasks at a steady

rate-the throughput does not match the interarrival time-and the latency of those tasks

varies eratically.

Wile the demand for processors remains fixed, the supply decreases; the resulting

contention causes the overall latency to rise. When the processor allocation is reduced to 9

of each primitive type, the system can not process tasks to meet throughput requirements.

Allocation Information

Type Processing Time Allocation
Source 1K words every 10 ms 3
FIR-WFT 5 ms 20
iWFT-MULT 6 ms 20
Sink 0 1
Bus 10 Mwords/second I

Table 8-4: Allocation Information for Example Simulation Study.
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Thc system latency grows slowly as tasks are buffered for longer time periods and eventu-

ally the buffering grows out of control. Given these simulations, the minimal resource allo-

cation requirement is 10 of each primitive type.

8.2. Example Architecture Comparison Study

An architect might be interested in simulating tasks which have interesting loads or

concurrencies to measure the effectiveness of task servicing facilities of the target architec-

ture. 3 Alternatively, an architect may wish to extract overhead and efficiency information by

determining the cost of task distribution and management facilities. This overhead can be

revealed via simulation comparisons with other architectural approaches or "ideal"

approaches. That is. the task overhead can be viewed as the difference in the latency of a

task which is implemented on the target architecture and the latency of that task as calcu-

lated as the longest path through the task graph. Simulation comparisons can be made by

finding tasks which have been used to measure the efficiency or overhead of competing

architectures. By simulating the target architecture under the same load and demand

Performance Information

Allocation Allocation Latency (avg.) FIR-WFT Use Mult-iWFT Use
of FIR-WFT of Mult-iWFT (psec (peak) (peak)

20 20 11120 9 12
15 15 11170 9 12
10 10 11320 9 10

1 9 9 unstable 9 9

Table 8-5: Simulation Results for Example Simulation Study.

3 The target architecture is the underlying architectural specification that the architect is studying.
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conditions as a competing architecture, the two architectures can be evaluated. This type of

comparison is typically considered benchmark comparison. An exhaustive performance -

comparison is not possible given a few benchmark tasks, as those benchmarks can not cover

all application domains and load conditions.

An example benchmark comparison can be made between the DFSP architecture and

the d-ALPS architecture. Both archtectures take the same fundamental approach to execut-

ing task graphs and incur costs that are within an order of magnitude of eachother. In addi-

tion, both architectures assume a microprocessor implementation of the task distribution,

memory management, and processor management control sections. The DFSP architecture

has a single, centralized control whereas the d-ALPS has a distributed control. Consider the

task graph in figure 5-1. Hartimo et al simulate their DFSP architecture on this task graph.

They use the execution times and processing rates in table 8-6. These execution times were

derived from cycle counts of a single processor implementations of the filtering and

transform operations presented in [Mint8l]. For the DFSP architecture, there is a single,

common data store so there is no need to pass data blocks between processing primitives.

The iongest execution path is 87.2 ms (m!liseconds). The DFSP architecture can service

Allocation Information
Type Processing Time Allocation
Source 1K words every 10 ms 3
FIR-WFT 58.2 ms 20
iWFT-MULT 29 ms 20

Table 8-6: Allocation Information for Example Simulation Study.
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tasks at an input rate of one 1K block per 10 ms (100 kHz) with a latency of 95.5 ms; the

delay over an ideal implementation is 8.3 ms and is due to system overhead, such as data- -

flow control, resource assignment, control packet transfer, etc.

The ALPS architecture can be simulated under the same load and task graph using a

simulator that models the specification in Appendix A. This simulator is called the d-ALPS

simulator, so named for the specification it models. This simulator, described in [McCo87],

is an event-based simulator that shares the VISA interface and support environment with a

PMS-level simulator. The PMS-level simulator was used to develop the d-ALPS

specification and to provide a prototype simulator to develop the simulation framework. A

description of this simulator can be found in [Leib86]. The two simulators have been

cross-verified by applying the same task graphs to both and evaluating the resulting simula-

tions for coherency. The key feature of the d-ALPS simulator is that it estimates the timing

required for each stage of the protocol and provides a realistic view of the overhead incurred

by a system that is built to this specification. Its monitoring capabilities are, at this point,

equivalent to the PMS simulator but can be enhanced because of the finer granularity of the

implementation.

The three sensor problem with the primitive timings listed in table 8-6 can be executed

in 89.6 ms by a system conforming to the d-ALPS specification. The configuration architec-

ture is shown in figure 5-2. This figure also shows that peak utilization of FIR-WFr primi-

tives was 18 and peak utilization of Mult-iWFr primitives was 10. The overhead due to

data transfers, task distribution and resource assignment is about 2.5 ms. For the task graph

in figure 8-2, both architectures had to assign six processing primitives every 10 ms. The

DFSP architecture did so with an average overhead of I ms per subtask. The d-ALPS archi-

tecture of Appendix A had an average overhead of 0.5 ms per subtask.
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Figure 8-2: An algorithm, architecture and performance
results for the three sensor problem.

8.3. Conclusion

The usefulness of architectural simulation is that it verifies the performance of a partic-

ular architecture under a specified load. Architectural simulation requires that servicing

heuristics be specified and an implementation structure for those heuristics to be created.

Determining that implementation structure may not precede a desire to gain information

about the particular heuristic. In this case, architectural simulation would be premature.

Developing simulators is a challenging and time-consuming enterprise. Furthermore,

instrumenting these simulators, verifying them and integrating them with design transfer sys-
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tens adds to the development time. Utilizing existing interface and intcraction cnvriron-

ments reduces this time, but the implementation process is inherently lengthy and costly."

Above all, the simulation methodology assumes that the investigator has something to simu-

late, e.g. a specification. The architect, who is interested in generating these specifications,

can investigate existing specifications via architectural simulation and can prototype newer

approaches with lcss costly, more flexible methodologies.



CHAPTER 9

Conclusion

This thesis described efforts that were directed at supporting the investigation of

scheduling and allocation pcoccduucs and implementable task distribution and mapping

mechanisms. The perspectives of both an architect and a configurer were considered, as

they are the developers and employers of ALPS architectures.

9.1. Research Goals

An architect is interested in the analysis and design of ALPS-like sytsems. This

involves assessing the performance of existing ALPS architectures or architecture

specifications, such as the d-ALPS specification in Appendix A. New ALPS architectures

will most likely require refinements in the fundamental methods they use for distributing

tasks, as well as in the implementation mechanisms that support those distribution methods.

Analysis methodologies must support the investigation of existing and proposed task distri-

bution methods and mechanisms.

A configurer has a more practical view of scheduling and allocation problems. The

mapping mechanisms are assumed fixed or limited for an existing underlying support archi-

tecture. For the d-ALPS architecture, there is a single mapping mechanism; for future archi-

tectures, there may be alternative mechanisms. The configurer implements an application

task graph by amassing a collection of ICU-primitive pairs and plugging them into a rack.

In doing so, a set of explicit and implicit performance criteria--definitions of how well the

assemblage must work-are observed. The configurer should be able to iteratively select,

analyze and verify a configuration; analysis methodologies should support this system

integration paradigm.

- 166-
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9.2. Achievements

As an interface between the definition of the scheduling issues and the methodologies

that support the investigation of those issues, the parameters of the scheduling problems that

are specific to ALPS architectures and ALPS problem specifications were developed. Task

specification parameters describe how a configurer can represent and manipulate an applica-

tion task graph. Manipulations which conserve the task graph's trueness to the application

(i.e. those which maintain subtask connectivity and precedence) provide alternative static

partial schedules. Static analysis methodologies provide a route to observing the impact of

these alternative partial schedules on resource demand. The methodologies have been imple-

mented as a collection of graph manipulation, expansion and analysis tools.

Architectural parameters describe the ALPS architecture on which a task graph is to be

applied. These parameters have configuration-general and configuration-specific portions.

The underlying architectural specification, such as the d-ALPS specification describes the

basic limitations of the support architecture, such as data transmission rates, task distribution

overhead, and memory bounds. The configurer adds to these restrictions by supplying an

application-specific allocation of resource pools; this allocation provides the processing

potential of the configuration architecture. Static analysis provides the configurer with allo-

cation bounds. Lower bounds describe the minimal processing power needed to service t.e

application, excluding overhead and task distribution inefficiences. Upper bounds provide

the configurer with the maximum effective processing power (exclusive of system

inefficiencies) to handle peak demands for resources-a generous (class one) allocation

which would require no buffering of demand. Implications of both general architecture

parameters and configuration-specific allocation decisions can be viewed via iterative archi-

tectural simulation. This provides a performance perspective of the architecture under vary-

i-g load conditions. Architectural simulators which model both a prototype ALPS
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architecture on a PMS level and the d-ALPS architecture on a protocol level have been built,

verificd, and integrated into a design capture and simulation environment. The simulators -

have facilitated example configuration experimcnts and have served as platforms for architec-

ture comparison and evaluation studies.

While simulators have becn influential in the design and analysis of ALPS architec-

tures, simulator devclopment is expensive and time-consuming. In addition, the underlying

simulator model is often difficult to change. Investigating large variations on the architec-

ture, especially those on the task mapping level has been facilitated by schedule simulation

techniques. Task mapping parameters describes how a task graph which encodes a partially

static ordering of subtasks is mapped (dynamically or statically) onto processors via

heuristic-guided demand buffering procedures. Schedule simulation has provided a route to

the investigation and comparison of these mapping parameters by allowing a course-grained

model of the architecture and task graph to coexist with a framework for simulating the

cost-free dispatching and buffering of subtasks under the guidance of user-supplied heuris-

tics. An approximated representation of basic architectural mapping mechanisms can be

added to this framework. For example, the effect of committing links on resource binding

has been added to the model. As this first pass approximation can be difficult to refine,

architectural simulation seems to be more appropriate for analysis of the details of the imple-

mentation. The preliminary results of the application of schedule simulation are twofold. Its

design and development provided insight and impetus to consider additional alternative task

mapping procedures. In addition, analysis has suggested that task servicing policies which

consider graph depth and arrival of subtasks tend to cause tasks to execute with more

stable-though higher-latencies.
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9.3. Current Work and Future Directions

A prototype d-ALPS implementation which is based on the d-ALPS specification is

being constructed at Brown University under the direction of Professor Dick Bulterman. In

addition, ALPS hardware and software emulators are being constructed. The hardware emu-

lator is an implementation of the d-ALP:S logical control protocol on general purpose proces-

sor boards. It is being constructed at the Naval Research Lab under the direction of Y. S.

Wu. The software emulator "nodes" are UNIX' processes which emulate the d-ALPS logi-

cal control protocol and use network facilities (TCP/IP) to communicate to each other. It is

based on a single node model written by the author and is being implemented on a collection

of workstations at Brown University. The emulators and prototype architecture can, along

with the architectural simulator and simulation environment, provide reasonably instrument-

able testbeds for analysis of and modifications to the high level control protocol,

Research and development of essential task distribution functions can be facilitated by

an expansion and integration of the support tools described in this thesis. Two of these

methodologies, static analysis and schedule simulation should be refined to facilitate iterative

investigations of the interaction between specific task definition parameters and mapping

parameters. Future work on application independent heuristics that have been developed

should focus on analyzing the feasibility (and cost) of distributed implementations.

Two directions for expansions of the analysis methodologies are proposed. The first is

a clarification and codification of the implicit performance criteria, such as reliability and sta-

bility. These criteria are central justifications for the ALPS dynamic assignment approach

over more static approaches. Task distribution mechanisms that is not essentially random

have the potential of addressing some of the recoverability and reconfigurability issues that

are fundamental design criteria; those mechanisms will also be more sensitive to system

'UNIX is a trademark of AT&T/Iell Laboratories
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state. The second direction is the inclusion of more stochastic models of resource availabil-

ity and resource requirements. As a placeholder to this dimension, resource requirements

and essential system timings can be modeled as distributions around estimations. This

simplification should be viewed as a prelude to more statistical modeling approaches that can

be more representative of the operation of thc underlying architecture.



APPENDIX A

d-ALPS High Level Logical Control Overview

Fol!owing are the first three chapters of the distributed-ALPS Initial Design

Specification [Nctw87]. These chapters comprise an introduction to the distributed ALPS

approach and the specification for the high level logical control functions of the interface

control unit (ICU). The first two sections of this appendix provide an overview of both the

d-ALPS protocol model and the ICU structure. These sections were written by Prof. Dick

C. A. Bulterman. The last section provide: a description of the high level ICU functions

and structure. This section was written by D. Leibholz. The Initial Design Specification

contains additional chapters which describe in detail the ICU logical control memory ele-

ments, the detailed inter-ICU protocol transactions and functions and structures that are

grouped under "ICU Low Level Control." Low level control functions and structures sup-

port data transmission, physical memory management and format conversion. These

chapters were not supplied in this appendix because they do not contribute to an understand-

ing of the scheduling and allocation issues presented in this thesis. The reader is referred to

the d-ALPS High Level Logical Control specification in [Leib87] and to the entire d-ALPS

ICU Specification in [Netw87].
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10.1. The distributed-ALPS Protocol Model

10.1.1. Architectural Characteristics

The deterministic nature of most DSP applications has made them suited to implemen-

tation on several classes of conventional architectures: these include fast uniprocessor archi-

tectures, in which each DSP function is encoded as a software or firmware routine, with the

processor's operating system providing a fast switching service [1]; a dedicated hardware

architecture, in which each DSP function is implemented as a hardware circuit, with physical

communication paths providing a system switching service [2]; and a network of (relatively)

general-purpose processors and global memories, in which DSP functions are encoded as

software and firmware routines, bound to one of several processors based on the needs of an

application, and in which data transferred between processors is buffered in high-speed glo-

bal queues 13].

d-ALPS uses a fundamentally different design approach. Instead of preallocating pro-

cessing components of an algorithm to a particular processor, processing is supported by

pools of special-purpose processors that are interconnected over one or more high-speed

(40MByte) interconnection networks. When a particular task needs to be accomplished, a

hardware bidding scheme is used to select a candidate processor from the pool to service the

needs of a particular logical (algorithmic) process. d-ALPS, which is based on the Alterna-

tive Low-level Primitive Structures (ALPS) framework [4,5], is a fully distributed system

that provides the advantages of a special-purpose hardware structure while providing

improved reliability and reusability over dedicated hardware and prescheduled networks. It

has the following characteristics:

" Interactions between processing components are not prescheduled;

" The structure of the interconnection network, while biased toward a class of applica-
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tions, is not based on a single application's structure;

" There is some inherent reliability advantage over non-distributed approaches;

" The implementation is able to gracefully accommodate changing needs, albeit with

some modification to the particular configuration of the implementation; and

" The performance of the resulting implementation is comparable to that of a special-

purpose implementation (that is, the performance may not be significantly better,

but it should not be significantly worse), assuming the same technology is used in

both , ases.

d-ALPS is intended to provide the designer of DSP applications with some of the potential

advantages of distributed architectures. First, by having component interactions that are not

prescheduled, changing configurations of a system can be accommodated more easily than in

a fixed interaction configuration. Second, by having a generalized implementation structure,

the system becomes reusable, both for a changing version of a single application, and across

applications of the same class. Third, by providing a recovery scheme for failed components

or busses, the designer is given an improvement in inherent reliability, allowing the imple-

mentation to be more robust (for the same designer effort) than special-purpose applications,

although at the cost of a sub-optimal implementation.' Fourth, graceful upgrades make a sin-

gle system extensible, so that changes in an algorithm may be integrated easily (although

perhaps not trivially) into a particular implementation.

d-ALPS uses a hardware-controlled distributed bidding mechanism, where processing

elements compete for the ability to serve a particular processing request. While a software-

controlled approach was considered, the reality of many software bidding schemes is that

their implementation often provides an impediment to good performance 16]; since

' Although a distributed implementation is sub-optimal because of scheduiing overhead, we have found that
performance need not suffer significantly. Discounting the advantage of primitive-based technological improve-
ments, we have found that the simulated performance of d-ALPS compares quite well with other implementation
techniques. This is considered in section 7.
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performance is crucial in our application domain, we decided to develop a hardware control

mechanism that was efficient (to allow the resolution of a particular bid in approximately -

450 nanoseconds) while keeping the system structure flexible enough to accommodate a

wide range of DSP applications.

10.1.2. The ALPS System Model

The Alternative Low-level Primitive Structures (ALPS) model represents one way of

taking a graph-based specification of a DSP algorithm and describing a system-level inter-

connection structure than can be used as the basis for an implementation. The ALPS model

was developed to strike a compromise between the dedicated hardware and (reusable)

software network implementation approaches for DSP systems. In the ALPS model, a

shared hardware primitive structure is used to approach the performance of the dedicated

hardware model by capitalizing on the processing node and communication-path idle time

inherent in most DSP applications. Unlike the software network model, which also attempts

to provide a shared approach to system implementation, ALPS uses a self-scheduling primi-

tive assignment scheme that eliminates the need for a (software) scheduling algorithm. This

implies that expense of programming (and verifying) the scheduling the interactions of pro-

cessing components can be avoided, and that "systems design" more closely models a

hardware building block assembly process.

A generic ALPS network model is given in Figure 10-1. The network is composed of

hardware primitives that are connected to each other via three "circuses": 2 a data circus,

which is used for high-speed transfer of data from one source primitive to one or more desti-

nation primitives; a control circus, which is used to arbitrate the primitive's access to the

data circus-providing a convenient focus for scheduling activity in the network; tnd a

2 The term circus is used in the sense of an English roadway roundabout (traffic circle), and is not neces-

sarily meant to describe either a physical interconnection structure or a (chaotic) logical cess protocol.
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. Message Circus

Figure 10-1: An ALPS Network Modcl

monitoring circus, which is used to monitor the status of the system (including reliability

checks). Each hardware primitive is connected to the ALPS network by a standardized

Interface Control Unit (ICU). The combination of the TCU and the primitive is called a

resource. The ICU manages the interaction with the signals that travel through the circuses,

including directing the flow of information into and out of a either the ICU's locoal memory,
~or local memory of the primitive (if it exists). The hardware primitive portion of the

resource may consist of the implementation of a single logical primitive (such as a VHSIC

FFT processor), a collection of related primitives (such as a "vector" primitive that per-

i forms vector addition, subtraction, multiplication and division), or a programmable processor

i (such as a high-speed digital signal processing microprocessor in the class of the TI TMS-

320).

The interconnection graph of Figure 10-1 represents a single ALP'S cluster. The model

allows for an expansion to multiple clusters when a single cluster of circuses and resources

RI I
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can not support the bandwidth required by the application. Each such cluster may contain

all or some of the resources types defined in the application graphs. Clusters communicate

with each other via inter-cluster controllers. Multiple clusters may also be used to provide

additional reliability in the system. Beyond noting their existence, however, the ALPS

model does not define any partitioning or allocation rules for separate clusters. For example,

each cluster may have one or more instances of a particular resource type, with the number

of resourccs used being a function of the original flow graph and the characteristics of the

implementation environment and requirements.

In the ALPS model, resource access is spread across a set of special-purpose primi-

tives. This allows single copies of a resource to be shared by various logical primitives of

the same type in the initial system graph. The process of developing an ALPS-based imple-

mentation model for a particular algorithm consists of balancing the utilization of a shared

communication facility with the utilization of individual system resources. If the ratio of

communication-time to processing-time is low, then a relatively low-bandwidth communica-

tion facility can be used to interconnect relatively many resources. If the ratio is high, then

a higher-bandwidth communication facility is required, or several disjoint clusters may need

to be defined.

10.1.3. ALPS Implementation Concerns

The basic structure .the ALPS model allows it to be implemented as a (static) net-

work or a (dynamic) distributed computing system. For a given DSP application, a static

implementation would pre-allocate the required number of processing nodes of each primi-

tive type based on an analysis of circus contention. This approach would be similar to that

reported in [7,81 and structurally similar to that of the processor network, with the exception

that scheduling control does not come from a control program but from the interactions of
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the resources. A distributed implementation would function in a similar way, with one

important exception: the distributed implementation, with dynamic rather than static resource

associations, could permit spare resources to be placed on the network that could be used to

transparently take the place of some failed nodes during system execution. Unlike the static

model, this substitution would not need to be preplanned, but could be done on a demand

basis without altering the function of the bidding scheme. Note that not all failure modes of

the distributed system could be accounted for in this manner--only the isolated failure of

one or more resources. Any further fault-tolerance must be explicitly encoded in a high-

level protocol.

d-ALPS uses a dynamic scheduling protocol, which can be summarized as follows: just

before a node finishes processing the data it had received earlier from its input queue(s), it

sends a message on the control circus inviting all resources of an appropriate type to bid for

being the designated recipient of the source node's data. The first resource responding to the

bid (i.e., the first resource of the appropriate type that responds to the allocation request)

becomes the target instance for the corresponding graph node. If no resource responds, the

data is queued (either locally or globally, depending on the implementation) until a target

resource is ready.

Although the bidding scheme allows any node of an appropriate type to act as the

instance that carries out a logical graph function, this can create two potential problems:

First, since a DSP application graph has nodes that are able to accept multiple input arcs

(i.e., connections from multiple other nodes), the d-ALPS implementation must be able to

synchronize requests initiated in various nodes to insure that they are all serviced by a single

target resource. For example, if two resources (representing different sending nodes) each

separately !;ind out bids for a common target node, then the allocation of that target node

needs to insure that a single receiving node will process both requests. Second, there is no



- 178-

inherent frame synchronization mechanism in the ALPS structure: an output data frame is

sent from one resource to the next as soon as a target resource can be found (and as soon as

the data circus is available). Any delayed frames are q,.i'ued for later transmission, but there

is no guarantee on the maximum delay that can be incurred. This means that there is no

inherent mechanism to insure that all data is sent in order, since a subsequent frame may be

processed and ready before the current frame has a chance to be processed.

In order to address the first problem, the design environment that is used to encode the

graph-based representations of the algorithm requires the designer to define a priority link,

this link, which can be any one of the input arcs into a node, determines the actual commit-

tal of a physical node. If non-priority links make a request for a resource's services, they

are masked until the priority link makes its request. As will be described, each scheduling

message carries a desired-node type, the requester's logical ID in the graph, and a frame

identifier; this allows queued requests to be resolved to their proper target nodes. The

second problem is addressed by providing an integrated system simulation environment that

allows the user to determine the amount of queueing of requests in the network, and to

determine if enough computational and communication resources exist to accommodate the

demand. The design and simulation environment is described in the collections of articles

placed under the heading "Design Environment" in the References and Bibliography section

of this report.

10.1.4. A Distributed ALPS Interconnection Network

The d-ALPS implementation model consists of a collection of one or more clusters,

where each cluster is responsible for executing either all or part of the DSP application

graph. Clusters may be interconnected in a number of ways to allow them to be used as

components of the system functional pipeline, or the may be connected so that they execute
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functions in parallel. The partitioning of an algorithm among clusters is highly algorithm-

and application-requirements dependent. There are a number of general partitioning con-

siderations, however, that apply to all applications. In practice, the connections between

clusters require special purpose gateway resources. In addition, the achievable data rates

between clusters is typically an order of magnitude slower than the data rates between

resources within a cluster. Therefore, it is desirable to minimize the amount of inter-cluster

communication in order to prevent commu..iication bottlenecks and to minimize the overhead

costs of having multiple clusters. (The overhead results from the required gateways and thc

interconnections between them.) In general, maximum system utilization is achieved by

minimizing the number of clusters. Note that the amount of processing that is possible

within a cluster is limited by the resources allocated to the cluster (although this is

configurable) and the bandwidth of the intra-cluster network. Inter-cluster design is also

affected by the reliability requirements of the system. Multiple clusters and/or multiple com-

munication paths between clusters can be defined in order to provide redundancy in case a

cluster becomes either disconnected or fails internally.

In this presentation, we will consider only single-cluster implementation network

models. Figure 10-2 shows the components of a single cluster. Since a cluster may need to

support a large number of resources (on the order of 200), the cluster structure is segmented

into a collection of subbusses. Each subbus is connected to a subbus backbone via a

repeater stage. Again, this segmentation is solely required for electrical constraints and may

be omitted if the number of resources is small. That is, resources or gateways may either

attach to a subbus or directly to the subbus backbone. Attached to each subbus is a sub-

group of the resources used in the cluster. There is no significance (other than for reliabil-

ity) to where a resource should be placed within the cluster or within a subbus.
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Figure 10-2: A cluster and its components.

10.1.4.1. Intra-Cluster Network Design

The fundamental limit in the performance of ALPS-based implementation models is the

time used to schedule and implement the transferring of information among resources. This

means than the intra-cluster interconnection network must efficiently support two tasks: the

transfer of control among resources and the transfer of data among instanced resources.

Control information is used to support the dynamic assignment of logical primitives to

resources; this assignment is made when one instanced resource needs to send data to

another resource in the cluster. Control delay is a combination of both the ICU decision

time as well as the time to transfer the required messages between resources in the network.

It is important to be able to minimize the control overhead since that time represents

resource idle time and therefore lower resource utilizations.

The data transfer task of the network is used to implement the movement of data

across the logical algorithmic links between logical primitives, thus defining logical channels

between resources. As ii typical with loosely coupled systems, the data transfer between

processors can easily become a system bottleneck. A real-time task for a particular algo-

rithm requires that a specific amount of processing, and therefore a specific amount of data



- 181-

transfers, must be accomplished within each specified time period. Since more processing

power can be added by simply adding resources, the ability of the network t3 transfer the -

data in the required time becomes the limiting factor in the model.

The topology that defines both the control and data paths within a cluster impacts the

efiective communication bandwidth, the number of resources (and therefore processing

power), and the reliability of the cluster. Unfortunately, each of these aspects is best served

by a different topological structure. Our distributed implementation uses a single control bus

architecture and a multiple data bus architecture. All data transfers are performed using

DMA-style burst transfers between the queues of a source resource and one or more destina-

tion resources. The transactions that occur on the control bus establish virtual circuits that

last for one data frame (one block transfer). Once the virtual circuits are established the data

busses can be used as simple DMA channels.

10.1.4.2. The Interface Control Unit (ICU)

Figure 10-3 shows the general block structure of an ICU and its connections to the net-

work and its primitive. 3 The ICU is based around the message control unit and the data con-

trol unit. The message control unit provides the central control for all of the ICU opera-

tions. The data control unit is a slave to the ICU, although it does execute its functions in

parallel.

Media access is implemented by allowing a single ICU to be in control of the message

bus at a time. The arbitration of control is accomplished by using a (fast) token passing

scheme. The ICU is primarily responsible for passing control from one ICU to another and

coordinating the bidding for receivers for the data on the output queues. The decisions ol

Rectangles with rounded comers represent control units and rectangles with square comers represent

memory units. (Note that connections between blocks primarily represent data paths and control connections are
generally implied.)
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Figure 10-3: The ICU block diagram.

how to create requests for links and whether to accept requests is based on information con-

tained in the transmit and receive tables, respectively. In general terms, these tables contain

a complete description of the connectivity of the algorithm which is used to determine the

dynamic connectivity of the implementation. The parameter table provides information

specific to a particular instance (algorithmic node) for the execution of the primitive. The

three tables are generally down-loaded at system startup time. It is possible, however, to -

send update messages to any of these tables during run-time-allowing, for example for an

operator to control application parameters that may need to change during the operation of

the system. The use of lookup-tables makes it possible to quickly perform the dynamic
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mapping of instances onto resources. For example, using the receive table, an ICU can

decide whether to accept a link in a single control cycle. Similarly, an ICU can generate a -

message to request bids on a link in a single cycle.

The physical primitive acts as a slave to the ICU. It begins execution after the ICU

logical control has determined that all of the required input data has been acquired and is

stored in the local queues. When the primitive has completed its computation and has

placed the output data back in the queues, it then signals the message control to transmit the

data to the next logical node in the algorithm. The primitive interface to the ICU is through

the shared memory of the parameter table and the queue storage unit. The shared memory

interface makes it relatively simple to incorporate new primitives so that resources may fol-

low technology advances. The shared memory interface also provides a means to load

instance-specific parameters from the parameter table. Further, the primitive can use the

queue storage as if it were local memory since there will be no contention from the ICU

during primitive execution. Alternatively, the primitive may copy and work with the data

within memory that is more tightly coupled to the primitive. The primitive would then need

to write its resultant data back into the queue storage after completing its processing.

The data control unit is responsible for both transmitting and receiving data from the

network at the request of the ICU logical control. The data control unit performs block

transfers of a particular block in the queue storage to other DCUs. In versions of the ICU

that use multiple data busses, the ICU uses a bus number that is transferred at the end of a

message transaction to determine which bus to listen to for the input data that it has agreed

to process. A transmitting ICU can choose a data bus by examining the data bus busy sig-

nals and selecting the first free bus it finds. (Note that single-bus systems do not need to

spend the extra control time to select and decode busses in use, at the cost of reduced sys-

tem bandwidth.)
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As data passes between the primitive (or parameter table in some cases) and the queue

storage, its format may optionally be convened to match the format of the primitive. These "

conversions include both precision and format. The format convener serves two purposes:

enabling heterogeneous primitives to work together in the distributed system, and compact-

ing data to minimize the amount of data transferred. In general, the format converter will be

used to transmit data in the most compact form without loosing precision. For example, an

11R (infinite impulse response) filter may internally perform its computations in double preci-

sion floating point format, and then transmit its output link using a single precision fixed

point format to a display. By placing the format converter between the primitive and the

queue rather than between the queue and the network, the data compaction can also be used

to minimize the required queue size. Another reason not to place the format convert

between the queue and the network is that the period of some conversions will be greater

than the period of the word transfers. Placing the converter on the primitive side isolates the

network from the conversion time fluctuations.

Whenever the queue storage is addressed (by the data control or the primitive), all

addresses must be mapped using the address manager. This address mapping is used to

reorder data within a block as well as to locate individual queues within the bulk of queue

storage. One example of the use of address mapping could be to reorder the input sequence

to an FFT operation. Arbitrary address mappings can be performed by using an indirection

mapping table that is particular for each primitive type.

The ICU must support three basic functions: it must receive data from other resources,

it must control the processing of its attached primitive, and it must transmit the results of

that processing to other resources within the system. The initial state and the idle state for

the ICU is the receive state. The ICU logical control unit is used to implement most flow of

the finite state machine.
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For standard resource types, the receive state machine constantly reads the message bus

and decides whether it should accept the current link and frame number pair 4 that was most "

recently transmitted. When the ICU logical control unit decides to accept a link it uses a

fast polling protocol described below to bid to accept the link. Once all of the required

input links for the firing of an instance have been read, the receive state machine signals the

primitive to start execution according to the parameters that are currently being addressed in

the parameter table and using the data found in the queue storage unit.

When the primitive has completed its execution and the output data is left in the data

queues, it signals the message control unit; this unit first attempts to acquire control of the

message bus using the round-robin control passing protocol described in the section below.

Upon obtaining control, the message control transmits messages for each output link for the

current logical output port and listens for acknowledgements to the request. If a link is not

accepted by any receiver, then that link is added to the list of locally queued links pending

transmission. The use of a local queue means that global access to a single system-wide

queue is avoided, saving transmission cycles on an already busy bus. Once all links for the

current output port have been attempted, a free data bus is chosen. The selected bus number

is then transmitted on the message bus and then the data control unit is signaled to carry out

the block transfer. Once the transfer has been started, control may be passed to another

ICU.

'An ICU presents a request for bids to accept a link by transmitting the link number and a frame number.
The link number uniquely identifies with which link in the algorithm the data is associated. A receiving ICU
uses the link number to index its receive table and use the output information to in pan determine whether the
link should be accepted. The frame number is used to match epochs of data. An instance that requires multiple
inputs will only accept links whose corresponding frame numbers match the frame number of the first link ac-
cepted for that instance. In general. frame numbers are assigned at sensor nodes when frames enter the system.
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10.1.5. Detailed Descriptions: An Overview

Detailed descriptions of the various functions of each component of the ICU and a

general ICU input format is presented in chapters 4-11 of this report. The descriptions are

divided into three logical groups of ICU functions: High-Level control, describing the logical

ICU protocol and its support implementation (these are considered in chapters 4-6); Low-

Level control, describing the bus structures and the message and data control sections that

directly use these structures (these are considered in chapters 7-9); and Auxiliary control,

describing the memory manager and format converter functions (these are considered in

chapters 10 and 11).

10.2. Interface Control Unit Structure

10.2.1. Overview

In this section we provide an overview of the structure of the ICU. This structure will

serve as a "road map" through the remainder of this specification.

Each of the headings below represent an ICU logical or physical block. Some of these

blocks will be implemented as concurrent hardware processor blocks, while others will be

(initially) implemented as software modules in a centralized control processor. An indication

of the proposed implementation strategy is given with each heading; justifications for each

decision is given in the complete description, below.

10.2.2. Inter-ICU Bus Structures

This specification restricts itself to a single cluster of ICUs, each of which is attached

to a single processing primitive. The ICUs are connected to each other by two classes of

interconnection busses: the message bus and the data bus.
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10.2.2.1. Data Busses

Thcre may be up to four data busses specified in the d-ALPS architecture. Each data

bus has a 16-bit parallel data path, plus control lines. The control lines are used for clock-

ing (although the bus can also be used in a non-clocked mode) and error control. The data

rate of the bus is specified as sending one 16-bit word between any ICU pair within a cluster

in 125 nanoseconds.

10.2.2.2. Message Bus

The message bus is used to support two type of activity in the d-ALPS architecture:

logical control synchronization among ICU (through a hardware bidding protocol) and

status/initialization processing. The message bus supports asynchronous transfers and has an

8-bit wide data path.

10.2.3. Low-Level Transfer Control

Access to both the data and message busses is controlled by the low-level transfer con-

trol portion of the ICU. This control is divided in to two separate, concurrent units: the data

control unit and the message control unit. The current protocol makes extensive use of the

notion that these units are implemented as hardware-based blocks. The bidding protocol

used to assign control among ICUs, for example, wifl only be successful if the classical

delay associated with microprocessor-based implementations can be avoided.

10.2.3.1. Data Control

The data control unit implements the logic to control data transfers between ICU pairs.

Once the source and destination of a transfer are established, the data control unit provides

for the error-free transfer of data in a DMA-style block transfer mode. While single-word

blocks can be sent, the data control unit is structured to provide efficient services for larger-
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sized blocks (typically in the range of IK-10K words). The data control unit also maintains

status information that is used by the testbed to instrumeAlt the d-ALPS implementation.

10.2.3.2. Message Control

The message control unit transfers four types of messages between ICUs within a clus-

ter: initialization messages, status messages, network control requests, and algorithmic node

bindings. The description of the uses of these is beyond the scope of this chapter, it is

addressed more fully in chapters 7 and 9.

10.2.4. High-Level Transfer Control

The ICU's high-level transfer control is a logical control service that manages the

response of ue ICU to messages and data transfers on the network. It is at this layer that

the essence of the d-ALPS protocol is based. Note that this control does not include the bid

resolution process, which is a low-level control function.

10.2.4.1. ICU Logical Control

The logical control block manages all data transfers within a particular ICU. It con-

trols access to the memory server on the ICU, notifies the format converter of any pending

conversions, and notifies the primitive when all of the input queues for that primitive are

already. The logical control portion of the ICU is implemented using a conventional

microprocessor architecture; it is described in chapters 4, 5, and 6.

10.2.5. Data Queue Management

In order to provide a common block and word buffering facility for both the data con-

trol portion of the ICU and the primitive itself, the ICU also contains a memory management

unit. The purpose of this unit is to manage the allocation of data queues, and to manage the

access to those queues by the primitive and the data control portion. The memory
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management unit is implemented as a block of 100 nanosecond memory, and a control logic

block that manages contention for the memory. The memory manager is discussed in-

chapter 10.

10.2.6. Format Converter

The final block of the ICU is the format converter. The format converter is an optional

component that can facilitate the conversion of several data types, such as integer to floating

point, or two's complement integer data to unsigned data. The purpose of the format con-

verter is to both offload the processing that a particular primitive may have to perform, and

to make a test-bed system more general, by allowing primitives of several different types to

be supported. The format converter is described in chapter 11.

10.3. ICU High-Level Control Architecture

103.1. Basic Structure and Architectural Decisions

The ICU Logical Control (hereafter called simply ICU Control) is responsible for mon-

itoring and controlling the support hardware facilities so that the ALPS communications pro-

tocol is implemented and the internals of the ICU operate and interact in an organized

manner. To these ends, the ICU Control is considered an autonomous, single point of con-

trol which has available to it special purpose facilities which, once given commands, operate

concurrently and share resources in an agreed upon and controlled manner. Each of the sup-

port facilities, the message control unit (MCU), data control unit (DCU), format conversion

unit (FCU) and memory manager (MM) provide control interfaces to ICU Control which are

essentially command-oriented. The ICU Control issues one of a set of commands to the

units and some simple handshaking and status lines indicate the completion and status of the

tasks. The data and message control units have buffer interfaces for the exchange of infor-
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mation wit.L other ICU Controllers on the network. The ICU Control, as a central controller,

operates sequentially and has primary access to node status and state information. The --

justification for a sequential controller of concurrent operating components follows by exa-

mining the basic implementation alternatives in termns of thc sometimes competing interests

of instrumcntability, scalability and accuracy of the model.

The structure of the ICU Control unit is illustrated in Figure 10-4.

Pi-mitive interiace

Receiv Ieu Prim it erl Format
Ta~IeConverter

Ifsace State

Strem Memreay

FigurePim I0C4 Main LoiaMotrlSrcu emr



- 191-

While the implementation of a centrally-based control unit presents obvious bottlenecks

in speed and complexity, many of the decisions that are made by this unit are inherently -

sequential in nature. The information that is manipulated by the ICU Control is gathered

from locally distributed sources, delays in obtaining current status information is minimal.

The principal advantage of using a centralized controller is that it facilitates the development

of a d-ALPS tcstbcd, where experimentation of different high-level protocols and instrumen-

ration of ICU activities are highly desirable.

Note that although justification exists for having a central ICU Control processor, this

does not extend to the entire ICU. In other words, while the ICU Control will operate

sequentially, the support functions of the ICU and the primitive must operate concurrently.

A single, serial ICU controller implementation is insufficient to accurately model the current

d-ALPS protocol, since it would incur significant operational delays that would not occur in

a generally-concurrent ICU. Furthermore, a fully serial implementation (i.e., one that is

based upon a microprocessor which fully controls activity on message and data busses and

which implements low-level memory management) would not be a scalable one, in that it

would not resemble the physical structure of the actual ICU operations. The design deci-

sions involved in a microprocessor-based ICU would not reflect similar decisions that must

be made for an operational system based upon concurrent functioning ICU components.

Designing this type of system would then be in isolation of the problems of contention and

control faced when designing the next system.

Our current plans for the control portion of the ICU call for a microprocessor with a

small amount of local memory. The processor may access and monitor a set of support

facilities via memory-mapped I/0 interfaces to finite-state machines (FSMs) which directly

monitor and control the above mentioned support facilities. With this approach, changes to

the essential protocol and the status and initialization messages can occur without affecting
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the interfaces to the underlying support facilities. Such changes would consist of a repro-

grammed Logic Control microprocessor. As thc protocol evolves and the instrumentation

requirements recede, the central control microprocessor can itself become a simple finite

state machine, issuing simple but powerful commands to interface FSMs. The state informa-

tion is then distributed and copied to the local FSMs and integration of this information is

minimized to operational necessity. The advantage of this approach is that the parallelism in

the protocol decision-making points can be enhanced and concurrency of operations, once it

is identified in a final protocol, can be facilitated.

10.3.2. A Description of Essential ICU Control Functions

The implementation of a d-ALPS-based protocol relies on the passing of data blocks

between heterogeneous special-purpose primitives in such a way that a signal processing

algorithm is executed. To this end, the current protocol uses a dynamic scheduling and

assignment of these primitives in that a primitive is scheduled to operate on a particular

epoch of data as the data becomes available, and the physical primitive that is chosen is not

predetermined. The central justification for the dynamic scheduling approach is that it

avoids the need for a central controller and avoids the synchronization problems that occur

when unexpected delays or dead nodes occur. Dynamic assignment offers fault resilience by

allowing any capable node to accept data instead of relying on a predetermined and possibly

dead node.

The requirements that these concepts place on an interface control unit in a

distributed-control environment aie support for the ablility to assume the role of any algo-

rithmic instance that requires the node's attached primitive and the ability to stage a bid for

the next receiver of data that has been processed. These are the essential protocol-related

functions of the ICU. Unfortunately, while these functions are conceptually clean, their
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implementation must be based around a system in which lower-level concerns such as

memory management , higher-level support for data queues, and general initialization and

monitoring fuhctions must also be supported. The support functions can be divided into two

basic groups: protocol-based support functions and extra-protocol support functions.

Protocol-based support functions of the ICU Control provide the basic implementation of the

protocol's funcuonality. Extra-protocol functions are support operations that facilitate the

initialization, modification, and monitoring of a functioning system.

10.3.2.1. A Overview of Protocol-Based Support Functions

The principal functions of the ICU are the sending and receiving of messages and data

to assign nodes as algorithmic instances. The operation of an ALPS system will typically

involve passing as much data through the system as can be handled. It is expected that in

the normal case, data will be pipelined -- data blocks generated at different times will be

processed by the system. The interarrival time of data into the system is guided by the

application domain, and the performance requirements of the actual application architecture

may be specif'cd in terms of system latency and system throughput. System latency is the

time a frame of non-processed data enters the network at a source subtracted from the time

the processed data block reaches a network data sink. System throughput is the number of

frames per second that enter and exit the network. In general, the latency will be

significantly larger than the interarrival time, but the throughput will will generally match the

interarrival time. The impact of these operational characteristics on ICU function is that any

particular ICU/Primitive pair, or node, must be classified not only by which instance it is

currently assuming but which time-slice, or frame, it is currently processing. A node then

operates on an instance/frame, a time and algorithm based description of a subtask per-

formed by an individual node. The ICUs must negotiate the fate of multiple frames of data,

seeing to it that the signal processing algorithm is performed over pipelined data.
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A second operational characteristic of this protocol is that data that has been partially

processed must be queued while resources are unavailable. Since an allocation of processors

may not and, in general should not be overly generous in that processors are always avail-

able to bind to instances, data should be stored in an organized manner and actually sent

over the network only when a receiver is found. Furthermore, the limited data channel

bandwidth poses a communication bottleneck which results in the temporary buffering of

data while other transfers are in progress. The effect of the queueing and buffering of data

is that both communications channels and processing sites should be considered system

resources. The are two cases of data buffering: transient buffering and recurrent buffering.

Transient buffering results from processing errors, data transfer errors or node losses (loss of

synchronization); recurrent buffering results from a particularly lean allocation of resources

that still meets system throughput and latency requirements, or high contention for data

channels due to algorithm demands and the synchronization demands that can occur when

data frames are pipelined. As long as there are sufficient resources to overcome either tran-

sient or recurrent buffering, the system should tend towards a steady state and the protocol

should gracefully handle local queueing of data and dynamic changes in the load on those

queues.

The remaining essential functions of the ICU Control are to facilitate the processing

primitive's access to data. When an ICU accepts a block of data it must allocate physical

memory for the data block and logically integrate that block with other blocks that refer to

the same instance/frame and with other instance/frames of data. The memory allocation task

also involves providing the primitive with a straightforward view of data blocks with which

it is currently concerned.

The allocation issues become a bit more complex depending upon the source of that

data. In the standard paradigm, data is transferred from one single purpose primitive to
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another. In a more general model, and one which is supported by this protocol, primitives

are multifunctioned and may in fact be able to receive as input the data they have just pro-

duced. The ICU should allow the co-location of output and subsequent input data via simple

memory allocation techniques. The advantages of this are a possibly reduced set-up time for

the subtask (provided that the co-locating requires little time in comparison to allocating new

blocks of memory for data coming from an extenal source), and reduced contention for the

data channels. For the case of a single link between the destination and source, a savings of

the time for that block transfer is realized as potential access time on the data channel by a

different pending transfer. This savings will not always be realized, as it depends on the

application algorithm, the processing and communication resource allocation and the pipeline

synchronization, and the load on the system. The disadvantage is that this does add com-

plexity to the underlying protocol and the actual implementation may preclude some

modifications of the protocol. It is believed that this additional complexity is worthwhile

given the current view of the central control structure of the ICU and the potential data

channel savings, which are highly valued.

The data itself may be stored in one of several standard data formats. The data for-

mats may differ not only in concept, i.e. floating point vs. integer, but in size: four bits for

some formats vs. sixteen bits for others. Thus a format conversion must be performed if the

network is to support primitives which operate under different formats or if the network will

support signal processing algorithms which by necessity require different data formats at

different points of computation. The additional support for data compaction or expansion

would allow savings in data channel usage under certain conditions. If a data word for a

particular application has only four bits of precision, it could still be stored and transmitted

within the network and node standard sixteen bit word, but could be stored and transmitted

more efficiently if four of these words are compacted into one sixteen-bit word. The com-
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plexity of then managing the primitive's view and access of these compacted words would

have to be incurred but the savings of data channel time might be worth it. The ICU Con-

trol causes a format converter to perform format and expansion or compaction conversions

on data is read or written into memory by the processing primitive.

As processing primitives may be multipurpose and in fact may be able to assume a

variety of types, the ICU must have knowledge of the capabilities of the primitive, choose

the correct current primitive function and provide the primitive with knowledge about its

current configuration. The information pertaining to a primitive's current function is col-

lected in a table called the parameter table. The ICU must provide the primitive with a

reference to this table so that it may collect and follow its operating guidelines for the

instance it is currently assuming. After parameter information is provided, the ICU Control

causes the primitive to begin execution.

10.3.2.2. A Summary of Extra-Protocol Functions

The ICU Control must undertake operations which are necessary to initialize an ALPS

system, monitor the performance of individual nodes and communications resources, and

maintain its running state. In addition, it must coordinate the operation of support hardware

and provide specific directives and handshaking so that concurrent operations can be

managed.

Initialization and Monitoring Functions

There are two classes of initialization functions. The first is the system and task infor-

mation uploading class. The second is the intra-ICU setup function class. Each of these is

considered in the following paragraphs.

Individual nodes must be informed of the overall task, the signal processing algorithm,

by providing a logical interconnection table which includes information about how each
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particular primitive type can participate in the overall task. In addition, a references which

give details about the production of data by each node must be provided so that the ICU can

match the correct primitive output blocks with the outgoing links. Providing the primitive

with system information also includes the assignment of logical addresses so that each node

knows how it will be addressed by other nodes in the system. Each node will not have a

list of node addresses and primitive type associations because die communications among

nodes will take place first across entire classes of nodes; specific nodes will then be selected

within that class by querying over broad categories. The rationale here is that all protocol

related functions which cause one physical node to address another are based directly on a

priori additional information about the node. The dynamic assignment and scheduling

heuristics predicate that specific addresses of nodes operating on certain data will not be

known in advance and querying for information over all eligible operators will be necessary

before focusing on an intended receiver. In addition, the concept of pools of similar

resources dictates that the pool be treated similarly. The concept of querying for the node

which is currently performing (or has previously performed) functions of particular interest,

and then finding the address of that node, is consistent with the dynamic assignment view.

Unique logical addresses are therefore assigned to each node but the nodes are not given a

direct view of the addresses of other nodes currently operational on the network.

The second class of initialization functions are intra-ICU set-up functions. Assuming

the general signal flow algorithm is known, the ICU Control must initialize the state of data

queues and support hardware so that their view of the state of the node is consistent. This

involves sending functional reset commands and initializing various state and bookkeeping

registers. A final initialization task is to upload and maintain a parameter table which gives

the processing primitive detailed information about its function during each mode of opera-

tion.
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System maintenance functions performed by the ICU Control allow individual nodes to

set operational parameters and houseclean. A system monitor node may query ICUs for" ;

status information either for statistics gathering reasons or to ascertain the health and status

of nodes and data. The status queries may be followed by commands to throw out old data

or change the priority of tasks. The importance of these functions is twofold. First, moni-

toring the performance of individual nodes without greatly perturbing the system provides a

usable level of instrumentation. Status queries could be staged at times in which the perfor-

mance of the system is not affected at all, provided the monitoring node is given sufficient

information about the system and protocol. The statistics gathering capability is one of the

central justifications of building a test-bed system.

The second function of status queries is to aid in runtime parameter modification and

garbage collection. The intention here is to provide either a balancing of access or syn-

chronization by modifying the ceilings on data queueing and by selectively pausing node

operations. Some of these facilities are not part of the current protocol, as the purpose and

tasks of an invasive runtime optimizer will depend on situations that are discovered once the

system is operational. Providing these facilities at this development stage will allow for

future integration of this monitor as well as future implementation of distributed monitoring

and optimizing heuristics.

Internal Interface and Mapping Functions

The ICU Control must engage in interface functions so that the operational sections of

the ICU can be initialized and told what to do and when to do it. Mapping functions per-

formed by the ICU Control allow these sections to share a common view of current data and

algorithm information. In particular, the ICU Control must provide references to the

memory manager so that it can in context translate data block-relative memory access

requests by support hardware into physical memory references. It must also provide

1
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contention resolution among devices sharing memory or state information so that the proto-

col algorithms are accurately implemented and contention is resolved in favor of tasks which

have definable and justifiable priority. Thc details of the interfaces between the ICU Control

and support hardware will be explored later but what follows is a brief functional description

of these interfaces in terms of initialization and operational infomiation and commands that

must be presented to these units.

Message passing across the network is undertaken by the ICU Control and facilitated

by the Message Control Unit (MCU). Commands to the MCU to send and receive address-

ing information followed by the actual message are presented by the ICU Control and simple

handshaking indicates the success or failure of a receiving node to accept the information.

The MCU also performs token and link bid operations, with the ICU Control supplying the

essential commands for the auctioner and the decisions to the bidders. Sample commands to

the MCU are: write message, read message, ignore incoming messages, engage in a bidding

process, initiate a bidding process.

The interface to the Data Control Unit is similar in structure to that with the MCU.

The DCU is responsible for monitoring the data busses for activity and engaging the down-

loading and uploading of blocks of data to and from the memory module. It is command-

driven but the read/write buffer which connects to the data busses is accessible only by the

DCU and the memory manager: the ICU Control can not read or write information to or

from the data busses. Sample commands to the DCU are: begin DMA transfer from data

bus X to memory, begin DMA transfer from memory to data bus X, find next free data bus.

The memory manager receives commands to allocate fixed sized pages of memory and

attach pointers to these pages to data queues. It then receives sequential or random refer-

ences to these queues and presents all data in a queue as a continuous block of memory. In

addition, it maintains a mapping of queue numbers to logical port numbers for the primitive
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so that the primitive specifies the logical port number and the memory manager accesses the

corresponding date queue. Additional mapping allows the ICU Control to specify the queue

from which the DCU will interact. Finally, the parameter tables will be stored on separate

data queues, one for each mode the primitive can assume (internally, each primitive is

indexed by mode) and the MM will contain a mapping of queue number to primitive type.

The ICU Control is responsible for commanding the MM to allocatc pages and then attach

them to a specific queue. It also commands the MM to destroy a queue, deallocating all

associated pages. The ICU Control can not actually access the memory pages; its function is

to set them up and then control competing access to them between the primitive and the

DCU. To accomplish this, a hardware lockout structure prevents the MM from honoring a

read or write request while the DCU is operating is controlled by the ICU Control, since it

is responsible for causing the DCU to operate.

The format convener translates data from its current format to a format used by the

primitive while it is operating in a particular type/mode. The ICU Control will instruct the

FCU to perform a read-conversion as words are read from memory by the primitive. The

FCU will also deal with compaction/expansion of low-resolution formats, i.e. four bit words

can be packed four to a sixteen bit word. In this case, since accessing of data through the

memory manager must be in sixteen bit chunks, the FCU will fetch and buffer once for

every four sequential accesses. The interface to the FCU is very simply a command to

specify the read-conversion and a separate one for write-conversion. The FCU then acts as

an intermediary for memory access by the primitive.

10.3.3. ICU Logical Control Operational Summary

Following is a summary of the activities initiated by key inter- and intra-ICU events.

These events are: message reception, primitive finishing and deciding to seek a next con-
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troller of the message bus.

10.3.3.1. Activities Initiated By Message Reception

Message reception initiates activities to first decide whether the message pertains to the

node, then determine the cssential type of message: whether it is a bid message, an intra-bid

message, a pass control message, an initialization message or a status query. The node then

reads supplementary information in the data portion of the message and processes the

request or query.

10.3.3.1.1. Requests to Send a Link

Requests to send a link require the receiving node to determine whether it can accept

that link. This determination is based on the current state of the primitive, the availability of

memory, and the current instantiation of the node. The activities that occur are the internal

status checking and then decision to take part in a bidding process for the link. The bidding

process is undertaken by the Message Control Unit. If a bid was successful, the node will

be either be instantiated to the receptor site of the link it has accepted or it will have

already been instantiated and will remain so as additional links for that algorithmic instance

are received. Once all data for an instance has been received, the ICU will instruct the

primitive to execute.

10.3.3.1.2. Requests to Pass Control

A node will want to control the message bus if it has data to send to other nodes. The

current controller, after utilizing the message bus for a proscribed number of transactions,

will seek to pass control by sending a pass control bid notice and subsequently controlling a

bidding process to find the next controller. Receiver nodes, upon receiving this bid notice,

examine the contents of data queues to determine if it has information to send. If it does,
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the ICU Control will cause its message control unit to engage in the bid for the control

token. If the node is chosen as the next controller, it will assume clocking and sequencing

responsibilities for the message bus and will subsequently use the bus to send link bid

request messages.

10.3.3.1.3. Initialization Messages and Status Queries -

A monitor node will gain control of the message bus in order to send initialization and

set-up commands to processor nodes. These messages will be received by processor nodes

and appropriate internal queries and value changes will be initiated. A node can not refuse

to answer or accept an initialization command unless the command places unreasonable

demands on the node, such as a command to allocate an excessive amount of memory. The

activities initiated by initialization messages can include changing the state of the associated

primitive, clearing and initializing data queues, and receiving new signal flow algorithm

maps. The activities initiated by status query messages include requiring the ICU Control to

make appropriate references to locally distribute sources: ICU local memory, support

hardware or the primitive, and resolving the query. A message is then returned to the moni-

tor node by one of two ways. Either the monitor will send the control token directly to the

receiving node or it will allow the receiving node to write response data onto the bus.

10.3.3.2. Activities Initiated By a Primitive Finishing Execution

A primitive that has finished execution of a data block will be in a mode where it will

seek control of the message bus when it is offered and attempt to send off data blocks as

long as it has data to send. It may receive new data and generate additional blocks of data,

in which case it will retain a control-hungry character until its output queue is empty. In

typical operation, nodes will generally have something on their output queue to be sent, and

will in general seek control when it is offered.
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10.3.3.2.1. Seeking Control

A node seeks control by deciding to participate in a bidding process for control passing

that is initiated by the current message bus controller. The decision to participate is made by

the ICU Control after inspection of its output queue. It subseqently instructs the attached

MCU to engage in the bid for control or to ignore the ensuing bid process.

10.3.3.2.2. Seeking Receivers for Data

Receivers are sought for data by posting messages that a bid will take place for a

specific block of data. The data block is identified by a link identification number which

references the receive table, which in turn indicates the algorithmic instance destination of

the block, specifications of the type and function of the next-needed primitive, and some

protocol related information. It is also identified by a frame number, which gives temporal

reference to data. The controlling node posts a bid request message and proceeds to initiate

a bidding process. The bidder that will be granted the block is the one which has an

assigned address which places it logically to the right of the current master, the assigned

address is essentially a geographical positioning of the node in a logical ring of all nodes.

When a bidder has been found, a data transfer is set up by finding an available data channel,

informing the receiver where to listen, and then beginning a transfer of data onto the bus.

When there are no more receivers for a block of data, the memory for that block is freed.

10.3.3.3. Seeking Next Controller

A node may not hog data or message channels. To ensure this, a restriction has been

set on the number of transfers that an ICU may attempt. In one instance of control of the

message bus, a node may attempt to send all links that are encompassed in one algorithmic

instance/frame. After that, even if no links could be sent, the node must pass control of the

message bus. This is done by sending a message that a bid for control is about to occur.

I



.204-

I
The controller then initiatcs a bidding process and looks for the node which is logically to

the right that wants to gain control. It then passes control to that node.

10.3.4. Summary

This chapter has presented an overview of ICU Logical Control functional characteris-

tics, and some of the justifications for its structural design. Detailed operational information

and structural information is presented in subsequent chapters of the d-ALPS Initial Design

Specification.
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